1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
3 years ago
7

Which example possesses mechanical potential energy?. A. a taut guitar string. B. an oscillating pendulum. C. a roller coaster r

ide. D. a child on a swing. E. a speeding car
Physics
2 answers:
Andrej [43]3 years ago
6 0
<span>
The taut guitar string haspotencial energy which we can see in action.</span>  <span>· so option a is correct.</span>
777dan777 [17]3 years ago
5 0

a taut guitar string

You might be interested in
You set your stationary bike on a high 80-N friction-like resistive force and cycle for 30 min at a speed of 8.0 m/s . Your body
stellarik [79]

A) The change in internal chemical energy is 1.15\cdot 10^7 J

B) The time needed is 1 minute

Explanation:

First of all, we start by calculating the power output of you and the bike, given by:

P=Fv

where

F = 80 N is the force that must be applied in order to overcome friction and travel at constant speed

v = 8.0 m/s is the velocity

Substituting,

P=(80)(8.0)=640 W

The energy output is related to the power by the equation

P=\frac{E}{t}

where:

P = 640 W is the power output

E is the energy output

t = 30 min \cdot 60 = 1800 s is the time elapsed

Solving for E,

E=Pt=(640)(1800)=1.15\cdot 10^6 J

Since the body is 10% efficient at converting chemical energy into mechanical work (which is the output energy), this means that the change in internal chemical energy is given by

\Delta E = \frac{E}{0.10}=\frac{1.15\cdot 10^6}{0.10}=1.15\cdot 10^7 J

B)

From the previous part, we found that in a time of

t = 30 min

the amount of internal chemical energy converted is

E=1.15\cdot 10^7 J

Here we want to find the time t' needed to convert an amount of chemical energy of

E'=3.8\cdot 10^5 J

So we can setup the following proportion:

\frac{t}{E}=\frac{t'}{E'}

And solving for t',

t'=\frac{E't}{E}=\frac{(3.8\cdot 10^5)(30)}{1.15\cdot 10^7}=1 min

Learn more about power and energy:

brainly.com/question/7956557

#LearnwithBrainly

3 0
3 years ago
A cannon with a muzzle speed of 1 000 m/s is used to start an avalanche on a mountain slope. The target is 2 000 m from the cann
Nataliya [291]

Answer:

∅ = 89.44°

Explanation:

In situations like this air resistance are usually been neglected thereby making g= 9.81 m/s^{2}

Bring out the given parameters from the question:

Initial Velocity (V_{1}) = 1000 m/s

Target distance (d) = 2000 m

Target height (h) =  800 m

Projection angle ∅ = ?

Horizontal distance = V_{1x}tcos ∅     .......................... Equation 1

where V_{1x} = velocity in the X - direction

           t = Time taken

Vertical Distance = y = V_{1y} t - \frac{1}{2}gt^{2}        ................... Equation 2

Where   V_{1y} = Velocity in the Y- direction

              t  = Time taken

V_{1y} = V_{1}sin∅

Making time (t) subject of the formula in Equation 1

                    t = d/(V_{1x}cos ∅)

                      t = \frac{2000}{1000coso} = \frac{2}{cos0}  =    \frac{d}{cos o}             ...................Equation 3

substituting equation 3 into equation 2

Vertical Distance = d = V_{1y} \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

                                  Vertical Distance = h = sin∅ \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Vertical Distance = h = dtan∅   - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Applying geometry

                              \frac{1}{cos o} = tan^{2} o + 1

  Vertical Distance = h = d tan∅   - 2 g (tan^{2} o + 1)

               substituting the given parameters

               800 = 2000 tan ∅ - 2 (9.81)( tan^{2} o + 1)

              800 = 2000 tan ∅ - 19.6( tan^{2} o + 1)  Equation 4

Replacing tan ∅ = Q     .....................Equation 5

In order to get a quadratic equation that can be easily solve.

            800 = 2000 Q - 19.6Q^{2} + 19.6

Rearranging 19.6Q^{2} - 2000 Q + 780.4 = 0

                    Q_{1} = 101.6291

                      Q_{2} = 0.411

    Inserting the value of Q Into Equation 5

                 tan ∅ = 101.63    or tan ∅ = 0.4114

Taking the Tan inverse of each value of Q

                  ∅ = 89.44°     ∅ = 22.37°

             

4 0
2 years ago
How much work can be done by a 50w motor in 5 sec?
Vaselesa [24]
A 50w motor can do 500w in 5 seconds
4 0
3 years ago
7) Three resistors having resistances of 4.0 Ω, 6.0 Ω, and 10.0 Ω are connected in parallel. If the combination is connected in
viva [34]

Answer:

A, 0.59A

Explanation:

The total resistance in the circuit is the resistances in parallel plus that in series.

Total resistance for those in parallel is;

1/(1/4 +1/6 +1/10) = 1/ (15+10+6 /60)

1/(31/60)= 60/31 ohms

Hence total resistance of the circuit is;

60/31 + 2 = (60+62)/31 = 122/31=3.94 ohms

To calculate the current flowing through the 10ohm resistance we need to know the voltage drop by subtracting the voltage drop in the 2ohm resistance from the total voltage drop.

Voltage drop on the 2 ohm resistance is;

Current on the 2 ohm resistor × 2 ohms

V = I ×R ; I - current

R - resistance

Current drop on the 2ohm resistance is;

Total voltage in the circuit/ total resistance in the circuit

12/3.94= 3.05A

Voltage drop on the 2 ohm resistance;

3.05 × 2 = 6.10volts

Hence voltage drop on the parallel resistance would be ;

12-6.10= 5.90V

Now voltage drop in a parallel circuit is the same hence 5.90v is dropped in each of the parallel resistance.

That said, the current drop on the 10 ohm resistor would be;

5.90/10 = 0.59A

Remember V= I× R so that I = V/R

6 0
3 years ago
Joanna wants to determine the speed of sound in xenon. When she plays a tone with a frequency of 440 Hz, the resulting sound wav
iVinArrow [24]

The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s

<h3 /><h3>What is speed?</h3>

Speed can be defined as the ratio of the total distance traveled by a body to the total time taken.

To calculate the speed of the sound in the xenon, we use the formula below.

Formula:

  • v = λf............. Equation 1

Where:

  • v = Speed of the sound in xenon
  • f = Frequency
  • λ = Wavelength.

From the question,

Given:

  • f = 440 Hz
  • λ = 40.4 cm = 0.404 m

Substitute the values above into equation 1

  • v = 440(0.404)
  • v = 177.76 m/s.
  • v ≈ 178 m/s

Hence, The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s

Learn more about speed here: brainly.com/question/4931057

7 0
2 years ago
Other questions:
  • When two atoms of the same nonmetal react, they often form a(an) A. ionic bond. B. polyatomic ion. C. diatomic molecule. D. pola
    10·2 answers
  • Which of the following phrases defines the angle of refraction?
    13·2 answers
  • Jenny and Betty are having a great time at Busch Gardens riding the Ubanga Banga bumper cars. Jenny, who is traveling southward
    10·1 answer
  • 27. Calculate the impulse when an average<br> force of 10 N acts on a cart for 5.0 s.
    12·1 answer
  • A 5.20 mol 5.20 mol sample of solid A A was placed in a sealed 1.00 L container and allowed to decompose into gaseous B B and C
    12·1 answer
  • Name of the instrument to measure atmospheric pressure ?
    12·1 answer
  • A man seeking to set a world record wants to tow a 101,000-kg airplane along a runway by pulling horizontally on a cable attache
    11·1 answer
  • Kepler’s first law states that:
    7·1 answer
  • How much current is drawn by a computer with a resistance of 42Ω that is connected across a potential difference of 220 V?
    6·2 answers
  • The spirit rover could move across the Martian landscape at a maximum of 2.68 m/mi. How many minutes would it take for it to tra
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!