First of all, looks like your teacher is indeed pretty horrible. Secondly, the constraints to consider would be proper weight distribution, methods to minimize excessive motion of the building structure, and quantities such as volume and density, which would help in determining the optimal structure. Keeping the frequency of oscillation for a building low in case of an earthquake or natural disaster would also be a priority.
Answer:
11.07Hz
Explanation:
Check the attachment for diagram of the standing wave in question.
Formula for calculating the fundamental frequency Fo in strings is V/2L where;
V is the velocity of the wave in string
L is the length of the string which is expressed as a function of its wavelength.
The wavelength of the string given is 1.5λ(one loop is equivalent to 0.5 wavelength)
Therefore L = 1.5λ
If L = 3.0m
1.5λ = 3.0m
λ = 3/1.5
λ = 2m
Also;
V = √T/m where;
T is the tension = 0.98N
m is the mass per unit length = 2.0g = 0.002kg
V = √0.98/0.002
V = √490
V = 22.14m/s
Fo = V/2L (for string)
Fo = 22.14/2(3)
Fo = 22.14/6
Fo = 3.69Hz
Harmonics are multiple integrals of the fundamental frequency. The string in question resonates in 2nd harmonics F2 = 3Fo
Frequency of the wave = 3×3.69
Frequency of the wave = 11.07Hz
We assume
(acceleration is constant. We apply the equation
where s is the distance to stop
. We find the acceleration from this equation
We know the acceleration, thus we find the distance necesssary to stop when initial speed is
Answer:
Explanation:
Here we know that initial temperature of ice is given as
now the latent heat of ice is given as
now we also know that the mass of ice is
so here we know that heat required to change the phase of the ice is given as