Answer: a pair of antennae
Explanation:
Answer:
More Energy
Explanation:
Energy is required to break bonds
Answer:
B.
Explanation:
when you use punnett squares, you cross the different genes with themselves. if T is in the first box on both sides, the genome will be TT. if the box lines up to tt, it will be tt. the boxes on the left use the genes' first letter and the boxes on the right use the second letter.
Answer:
Cd(s) + AgNO₃(aq) → Cd(NO₃)₂ (aq) + Ag(s)
Oxidized: Cd
Reduced: Ag
Explanation:
Cd(s) + AgNO₃(aq) → Cd(NO₃)₂ (aq) + Ag(s)
Cd → Cd²⁺ + 2e⁻ Half reaction oxidation
1e⁻ + Ag⁺ → Ag Half reaction reduction
Ag changed oxidation number from +1 to 0
Cd changed oxidation number from 0 to +2
Let's ballance the electrons
( Cd → Cd²⁺ + 2e⁻ ) .1
( 1e⁻ + Ag⁺ → Ag ) .2
Cd + 2e⁻ + 2Ag⁺ → 2Ag + Cd²⁺ + 2e⁻
Finally the ballance equation is:
Cd(s) + 2AgNO₃(aq) → Cd(NO₃)₂ (aq) + 2Ag(s)
Answer:
Growth rate
Explanation:
The responding variable, also known as the DEPENDENT VARIABLE, is the variable that responds to changes or manipulations made to another variable (independent or manipulable variable) in the experiment. It is the measured variable of an experiment.
According to the hypothesis provided for this investigation, the scientist wants to determine if the amount of fertilizer plants of the same species receive will affect their growth rate when planted in the same condition. This shows that the independent variable is the amount of fertilizer to be used while the RESPONDING VARIABLE OR DEPENDENT VARIABLE is the GROWTH RATE OF THE PLANTS because it responds to the amount of fertilizer.