Oxygen: 16.00 g/mol
Hydrogen: 1.01 g/mol
The mass would be 17.01 g/mol
Answer: 6 moles
Take a look at the balanced chemical equation for this synthesis reaction
N 2(g] + 3 H 2(g] → 2 NH 3(g]
Notice that you have a 1:3 mole ratio between nitrogen gas and hydrogen gas. This means that, regardless of how many moles of nitrogen gas you have, the reaction will always consume twice as many moles of hydrogen gas.
So, if you have 2 moles of nitrogen taking part in the reaction, you will need
2 moles N 2 ⋅ 3 moles H 2 /1 mole N 2 = 6 moles H 2
Answer:
Morphology and phylogenetics revealed by fossils. Perhaps the strongest evidence to support the Cambrian evolutionary explosion of animal forms is the first clear appearance, in the Early Cambrian, of skeletal fossils representing members of many marine bilaterian animal phyla
Explanation:
also pls vote brainliest <3 :)))
Answer:
10.85 g of water
Explanation:
First we write the balanced chemical equation

Then we calculate the number of moles of nitric acid produced
n(HNO3) = 
According to the balanced equation, water needed in moles is always half the number of moles of HNO3 produced. So since we will produce 1.2044 mol of HNO3, we will need 0.6022 mol of water. Now to calculate what mass that is:
mass(water)=number of moles*molar mass=0.6022mol*18.02g/mol=10.85g