1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
3 years ago
6

The solubility of KCl is 3.7 M at 20 °C. Two beakers each contain 100. mL of saturated KCl solution: 100. mL of 4.0 M HCl is add

ed to the first beaker and 100. mL of 8 M HCl is added to the second. (a) Find the ion-product constant for KCl at 20 °C. 14 Enter as a number to 2 decimal places. (b) What mass, if any, of KCl will precipitate from each beaker? Enter as a number to 0 decimal places. beaker 1: 0 grams beaker2: grams
Chemistry
2 answers:
JulijaS [17]3 years ago
8 0

Answer:

a)The Ksp was found to be equal to 13.69

Explanation:

Terminology

Qsp of a dissolving ionic solid — is the solubility product of the concentration of ions in solution.

Ksp however, is the solubility product of the concentration of ions in solution at EQUILIBRIUM with the dissolving ionic solid.

Note that if Qsp > Ksp , the solid at a certain temperature, will precipitate and form solid. That means the equilibrium will shift to the left in order to attain or reach equilibrium (Ksp).

Step-by-step solution:

To solve this: 

#./ Substitute the molar solubility of KCl as given into the ion-product equation to find the Ksp of KCl.

#./ Find the total concentration of ionic chloride in each beaker after the addition of HCl. We pay attention to the amount moles present at the beginning and the moles added.

#./ Find the Qsp value to to know if Ksp is exceeded. If Qsp < Ksp, nothing will precipitate.

a) The equation of solubility equilibrium for KCL is thus;

KCL_(s) ---> K+(aq) + Cl- (aq)

The solubility of KCl given is 3.7 M.

Ksp= [K+][Cl-] = (3.7)(3.7) =13.69

The Ksp was found to be equal to 14.

In pure water KCl

Ksp =13.69 KCl =[K+][Cl-]

Let x= molar solubility [K+],/[Cl-] :. × , x

Ksp =13.69 = [K+][Cl-] = (x)(x) = x²

x= √ 13.69 = 3.7 M moles of KCl requires to make 100mL saturated solutio

37M moles/L

The Ksp was found to be equal to 14.

4.0 M HCl = KCl =[K+][Cl-]

Let y= molar solubility :. y, y+4

Ksp =13.69= [K+][Cl-] = (y)(y*+4)

* - rule of thumb

Ksp =13.69= [K+][Cl-] = (y)(y*+4)= y(4)

13.69=4y:. y= 3.42 moles/100mL

y= 34.2moles/L

8 M HCl = KCl =[K+][Cl-]

Let b= molar solubility :. B, b+8

Ksp =13.69= [K+][Cl-] = (b)(b*+8)

* - rule of thumb

Ksp =13.69= [K+][Cl-] = (b)(b*+8)= b(8)

13.69=8b:. b= 1.71 moles/100mL

17.1 moles/L

Therefore in a solution with a common ion, the solubility of the compound reduces dramatically.

defon3 years ago
8 0

Answer:

(a) 13.69

(b) i beaker 1: 0g

    ii beaker 2: 0g

Explanation:

a. The solubility equilibrium equation for KCl is

KCl(s)  ⇄  K⁺(aq)  +  Cl⁻(aq)

3.7M KCl contains equal moles of K ions and Cl ions

therefore, the ion-product expression is written thus

Ksp = [K⁺][Cl⁻]

       = [3.7][3.7]

       = 13.69

b. from the first two beakers containing 100 mL and 3.7M KCl

moles of K⁺ = moles of Cl⁻ = moles of KCl = 3.7moles in 1L

if 3.7M Implies 3.7 moles in 1L or 1000 mL or 1000 cm³

how many moles will be contained in 100 mL

this is calculated as follows

3.7moles/Liter * 100 mL

\frac{3.7 moles KCl}{1000 mL} * 100 ml = 0.37moles KCl

= 0.37moles K⁺ = 0.37moles Cl⁻

4.0 M HCl, contains

\frac{4 moles HCl}{1000 mL} *100mL = 0.4moles HCl = 0.4 moles H = 0.4moles Cl in 100mL

8.0M HCl, contains

\frac{8moles HCL}{1000mL} *100mL=0.8mole HCl=0.8molesH=0.8molesCl in 100mL

now, in the first beaker 100 mL of 4M HCl is added to 100 mL of 3.7M KCl

total moles of Cl⁻ (0.4 + 0.37) moles = 0.77 moles

total moles of K⁺ remains 0.37 moles

total volume of solution = (100mL + 100mL) = 200mL/1000mL = 0.2L

total moles of Cl⁻ per Liter = 0.77moles/0.2L = 3.85M Cl⁻

total moles of K⁺ per Liter = 0.37moles/0.2L = 1.85M K⁺

Qsp must be greater or equal to Ksp for Precipitation to occur, that is

Qsp ≥ Ksp

Qsp = [K][Cl] = [1.85][3.85] = 7.12 this is less than 13.69(Ksp)

hence no KCl will precipitate in the first beaker

since there is no precipitate, there is therefore no need for calculating the mass precipitated

and the answer is 0g

(bii) now, in the second beaker 100 mL of 8M HCl is added to 100 mL of 3.7M KCl

total moles of Cl⁻ (0.8 + 0.37) moles = 1.17 moles

total moles of K⁺ remains 0.37 moles

total volume of solution = (100mL + 100mL) = 200mL/1000mL = 0.2L

total moles of Cl⁻ per Liter = 1.17moles/0.2L = 5.85M Cl⁻

total moles of K⁺ per Liter = 0.37moles/0.2L = 1.85M K⁺

Qsp must be greater or equal to Ksp for Precipitation to occur, that is

Qsp ≥ Ksp

Qsp = [K][Cl] = [1.85][5.85] = 10.82 this is less than 13.69(Ksp)

hence no KCl will precipitate also in the second beaker

since there is no precipitate, there is therefore no need fo calculating the mass precipitated

and the answer is 0g

You might be interested in
What is the atomic mass of one mole of H? _______g/mol
Nikolay [14]
The answer is 1.008g/mol
8 0
3 years ago
Rank the following fertilizers in decreasing order of mass percentage of nitrogen:
charle [14.2K]
<h3>Answer:</h3>

        NH₃ > NH₄NO₃ > (NH₄)₂HPO₄ > (NH₄)₂SO₄ > KNO₃ > (NH₄)H₂PO₄

<h3>Soution:</h3>

In (NH₄)₂HPO₄:

Mass of Nitrogen  =  N × 2  =  14 × 2  =  28 g.mol⁻¹

Molar Mass of (NH₄)₂HPO₄  =  132.06 g.mol⁻¹

Mass %age  =  Mass of N / M.Mass of (NH₄)₂HPO₄ × 100

Mass %age  =  28 g.mol⁻¹ / 132.06 g.mol⁻¹ × 100

Mass %age  =  21.20 %

In (NH₄)₂SO₄:

Mass of Nitrogen  =  N × 2  =  14 × 2  =  28 g.mol⁻¹

Molar Mass of (NH₄)₂SO₄  =  132.14 g.mol⁻¹

Mass %age  =  Mass of N / M.Mass of (NH₄)₂SO₄ × 100

Mass %age  =  28 g.mol⁻¹ / 132.14 g.mol⁻¹ × 100

Mass %age  =  21.18 %

In KNO₃:

Mass of Nitrogen  =  N × 1  =  14 × 1  =  14 g.mol⁻¹

Molar Mass of KNO₃  =  101.10 g.mol⁻¹

Mass %age  =  Mass of N / M.Mass of KNO₃ × 100

Mass %age  =  14 g.mol⁻¹ / 101.10 g.mol⁻¹ × 100

Mass %age  =  13.84 %

In (NH₄)H₂PO₄:

Mass of Nitrogen  =  N × 1  =  14 × 1  =  14 g.mol⁻¹

Molar Mass of (NH₄)H₂PO₄  =  115.03 g.mol⁻¹

Mass %age  =  Mass of N / M.Mass of (NH₄)H₂PO₄ × 100

Mass %age  =  14 g.mol⁻¹ / 115.03 g.mol⁻¹ × 100

Mass %age  =  12.17 %

In NH₃:

Mass of Nitrogen  =  N × 1  =  14 × 1  =  14 g.mol⁻¹

Molar Mass of NH₃  =  132.14 g.mol⁻¹

Mass %age  =  Mass of N / M.Mass of NH₃ × 100

Mass %age  =  14 g.mol⁻¹ / 17.03 g.mol⁻¹ × 100

Mass %age  =  82.20 %

In NH₄NO₃:

Mass of Nitrogen  =  N × 2  =  14 × 2  =  28 g.mol⁻¹

Molar Mass of NH₄NO₃  =  80.04 g.mol⁻¹

Mass %age  =  Mass of N / M.Mass of NH₄NO₃ × 100

Mass %age  =  28 g.mol⁻¹ / 80.04 g.mol⁻¹ × 100

Mass %age  =  34.98 %

5 0
3 years ago
The following characteristics describe which type of mixture, homogeneous or heterogeneous? The substance is mixed uniformly thr
alexira [117]
The correct answer to this question is letter "A. homogeneous mixture." The following characteristics describe the type of mixture, which is a homogeneous mixture. The substance is mixed uniformly throughout and each part of <span>the substance contains the same ratio of materials with the same properties</span>
3 0
3 years ago
What starts a convection current in the mantle?
julsineya [31]

Heat in the mantle comes from the Earth's molten outer core, decay of radioactive elements and, in the upper mantle, friction from descending tectonic plates.The temperature difference between the upper and lower boundaries of the mantle requires heat transfer to occur.

Material heating up in the mantle

6 0
2 years ago
What is Sublimation? ​
Stolb23 [73]

Answer:

When a solid turns to a gas.

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • A precipitate of zinc hydroxide can be formed using the reaction below.
    6·1 answer
  • An animal that backs on a warm rock during the morning hours but retreats to the shade of the rocks during the middle of the day
    15·1 answer
  • Friction acts in a direction blank to the direction of the object's motion?
    14·2 answers
  • Rate data have been determined at a particular temperature for the overall reaction 2NO(g) + 2H2(g) → N2(g) + 2H2O(g). The value
    5·1 answer
  • How could you obtain sugar crystals from the sugar solution, without losing the ethanol?
    6·1 answer
  • An infrared light detector would be most beneficial to someone who investigates
    15·2 answers
  • Which are risks of using nuclear power plants to generate electricity? Check all that apply.
    13·2 answers
  • A chemist adds a sample of an ideal gas to a balloon and measures its volume. The chemist removes some of the gas from the ballo
    9·1 answer
  • Find the unit price: 12 eggs for $3. How much is the cost per (one) egg?.
    6·1 answer
  • Why does potassium permanganate need to be standardized right before a titration?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!