Closed system. If the system is not closed, matter or energy can escape from the system. an example of this is if you react magnesium and hydrochloric acid in a open system. The H₂ gas is going to escape making it look like some of the mass disappeared . in that same reaction some in an open system will also loose heat to the surrounding which will make it look like less heat was produced.
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.

The given reaction equation is as follows.

This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.

Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Answer:
FeCl3 + 3KOH → Fe(OH)3 + 3KCl
Explanation:
Answer:
A. Decomposed organic matter
Explanation:
We need to crack molecules in
order for us to get the desired molecule. For example, in the extraction of
crude oil, after entering the fractional distillation, it will give products
base on their molecular structure. The products are gasoline, diesel fuel, jet
fuel, wax, asbestos,kerosene.