Answer:
0.000000540
Explanation:
Step 1: Make an ICE chart for the solution of AgBr
"S" represents the molar solubility of AgBr
AgBr(s) ⇄ Ag⁺(aq) + Br⁻(aq)
I 0 0
C +S +S
E S S
Step 2: Write the expression for the solubility product constant (Ksp)
Ksp = [Ag⁺] [Br⁻] = S × S
Ksp = S² = (0.0007350)² = 0.000000540
Answer:
49.2 g/mol
Explanation:
Let's first take account of what we have and convert them into the correct units.
Volume= 236 mL x (
) = .236 L
Pressure= 740 mm Hg x (
)= 0.97 atm
Temperature= 22C + 273= 295 K
mass= 0.443 g
Molar mass is in grams per mole, or MM=
or MM=
. They're all the same.
We have mass (0.443 g) we just need moles. We can find moles with the ideal gas constant PV=nRT. We want to solve for n, so we'll rearrange it to be
n=
, where R (constant)= 0.082 L atm mol-1 K-1
Let's plug in what we know.
n=
n= 0.009 mol
Let's look back at MM=
and plug in what we know.
MM= 
MM= 49.2 g/mol
Answer:
13 mol NO
Explanation:
Step 1: Write the balanced equation
4 NH₃(g) + 5 O₂(g) ⇒ 4 NO(g) + 6 H₂O(g)
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of O₂ to NO is 5:4.
Step 3: Calculate the number of moles of O₂ needed to produce 16 moles of NO
We will use the previously established molar ratio.
16 mol O₂ × 4 mol NO/5 mol O₂ = 13 mol NO