Answer:
Second order
Explanation:
We could obtain the order of reaction by looking at the table very closely.
Now notice that in experiment 1 and 2, the concentration of [OH^-] was held constant while the concentration of [S8] was varied. So we have;
a situation in which the rate of reaction was tripled;
0.3/0.1 = 2.10/0.699
3^1 = 3^1
Therefore the order of reaction with respect to [S8] is 1.
For [OH^-], we have to look at experiment 2 and 3 where the concentration of [S8] was held constant;
x/0.01 = 4.19/2.10
x/0.01 = 2
x = 2 * 0.01
x = 0.02
So we have;
0.02/0.01 = 2^1
2^1 = 2^1
The order of reaction with respect to [OH^-] = 1
So we have the overall rate law as;
Rate = k[S8]^1 [OH^-] ^1
Overall order of reaction = 1 + 1 = 2
Therefore the reaction is second order.
Answer:
Hydrogen
Explanation:
Hydrogen can never be central atom despite its low electronegativity
Answer:
0.0258 mol <em>Answer</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Using ideal gas equation,
P\times V=n\times R\times T
Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=1 atm
T=273 K
R=0.0821 atm L mol ⁻¹
Mass of HCl given= 49.8 g
Molar mass of HCl given=36.41
Number of moles of gas, n= \frac{Given mass of the substance}{Molar mass of the substance}
Number of moles of gas, n= \frac{49.8}{36.46}
Number of moles of gas, n= 1.36
Putting all the values in the above equation,
V=\frac{1.36\times 0.0821\times 273}{1}
V=30.6 L
So the volume will be 30.6 L.