Answer:
1. Helper T cell is one of the T cells that absence results in no immune response.
2. Cytotoxic T cell is also a type of white blood cell that Kills cancer cells and virus infected body cells.
3. Regulatory T cell is a suppressor T cells that slows or stops the immune response.
4. Memory cell is a type of B cell that enables quick and efficient response to secondary exposure to antigen
5. B cell is a cell that forms antibody producing cells
Answer:
the answer is either B or C
explanation:
brainliest?
There are usually 3 topics used to compare types of radiation:
Ionising ability
Penetrative power
Range in air
Ionising ability
Alpha radiation has strong ionising ability, while beta only has moderate ionisation and gamma is very weakly ionising.
Penetrative power
Alpha particles are weakly penetrating, stopped by paper, while beta particles have stronger penetrating ability, stopped by skin and gamma radiation is very strongly penetrating, stopped only by thick layers of lead.
Range in air
Alpha particles- range of only a few centimetres
Beta - range of up to one meter
Gamma- infinite range in air.
Hope this helps:)
Write the equation for the reaction and balance it. In this case the equation is: 2NaOH + H2SO4 → Na2SO4 + 2H2O
Convert the given amount to moles. Molarity, “M” is moles per liter. The given amount is 25 ml of 1.2 M H2SO4. Since Molarity uses Liters, the volume must be converted from ml to L.
Use the mole ratio in this case 2 moles of NaOH to ! mole of H2SO4
Convert the moles to the required units. In this case the required units are grams. The formula weight in grams er mole.
25 ml H2SO4 * 1L/1000 ml * 1.2 Moles/L * 2 moles NaOH/1 mole H2SO4 * 40 g NaOH/ 1 Mole NaOH
Perform these calculations and you have the answer! Timothy, When doing homework, the answer is NOT the important thing, the METHOD is! These 4 steps, combined with required changes in units will sove ANY stoichiometric problem easily.
Answer:
1 - e, 2 - k, 3 - a, 4 - i, 5 - b,
Explanation:
The ratio of the amount of analyte in the stationary phase to the amount in the mobile phase. --- Retention factor.
Time it takes after sample injection into the column for the analyte peak to appear as it exits the column. -- Retention time
The process of extracting a component that is adsorbed to a given material by use of an appropriate solvent system. -- Elution
Measure of chromatographic column efficiency. The greater its value, the more efficient the column. -- Theoretical plate number
Gas, liquid, or supercritical fluid used to transport the sample in chromatographic separations. -- Mobile phase
Immiscible and immobile, it is packed within a column or coated on a solid surface. -- Stationary phase