The equation to show the depreciation at the end of x years is

Data;
- cost of machine = 1500
- annual depreciation value = x
<h3>Linear Equation</h3>
This is an equation written to represent a word problem into mathematical statement and this is easier to solve.
To write a linear depreciation model for this machine would be
For number of years, the cost of the machine would become

This is properly written as

where x represents the number of years.
For example, after 5 years, the value of the machine would become

The value of the machine would be $500 at the end of the fifth year.
From the above, the equation to show the depreciation at the end of x years is f(x) = 1500 - 200x
Learn more on linear equations here;
brainly.com/question/4074386
Answer:
-7.8k - 7.2
Step-by-step explanation:
Distribute 0.6 to the terms in the parentheses:
0.6(-13k - 12)
-7.8k - 7.2
So, the simplified expression is -7.8k - 7.2
Answer:
x = (5 + i sqrt(15))/4 or x = (5 - i sqrt(15))/4
Step-by-step explanation:
Solve for x:
2 x^2 - 5 x + 5 = 0
Hint: | Using the quadratic formula, solve for x.
x = (5 ± sqrt((-5)^2 - 4×2×5))/(2×2) = (5 ± sqrt(25 - 40))/4 = (5 ± sqrt(-15))/4:
x = (5 + sqrt(-15))/4 or x = (5 - sqrt(-15))/4
Hint: | Express sqrt(-15) in terms of i.
sqrt(-15) = sqrt(-1) sqrt(15) = i sqrt(15):
Answer: x = (5 + i sqrt(15))/4 or x = (5 - i sqrt(15))/4
Answer: What do I solve for?
Step-by-step explanation:
Do I need to solve for the slope, equation, x-int, etc?