1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
3 years ago
12

Difference of Means Test. A sample of seniors taking the SAT in Connecticut in 2015 revealed the following results for the math

portion of the exam by Gender. Males Females Mean 492 520 Std Dev 119 129 N 150 165 The test statistic for a hypothesis test that the mean level of Math SAT scores between males and females is different (assuming equal variances) is:_______. A. 1.982 B. 13.973 C. 1.96 D. 2.004
Mathematics
1 answer:
Yuri [45]3 years ago
7 0

Answer:

t=\frac{(520 -492)-(0)}{124.340\sqrt{\frac{1}{150}+\frac{1}{165}}}=1.996

And the most near value would be:

D. 2.004

Step-by-step explanation:

When we have two independent samples from two normal distributions with equal variances we are assuming that  

\sigma^2_1 =\sigma^2_2 =\sigma^2

And the statistic is given by this formula:

t=\frac{(\bar X_1 -\bar X_2)-(\mu_{1}-\mu_2)}{S_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}

Where t follows a t distribution with n_1+n_2 -2 degrees of freedom and the pooled variance S^2_p is given by this formula:

\S^2_p =\frac{(n_1-1)S^2_1 +(n_2 -1)S^2_2}{n_1 +n_2 -2}

This last one is an unbiased estimator of the common variance \sigma^2

The system of hypothesis on this case are:

Null hypothesis: \mu_1 = \mu_2

Alternative hypothesis: \mu_1 \neq \mu_2

Or equivalently:

Null hypothesis: \mu_1 - \mu_2 = 0

Alternative hypothesis: \mu_1 -\mu_2 \neq 0

Our notation on this case :

n_1 =165 represent the sample size for group female

n_2 =150 represent the sample size for group male

\bar X_1 =520 represent the sample mean for the group female

\bar X_2 =492 represent the sample mean for the group male

s_1=129 represent the sample standard deviation for group 1female

s_2=119 represent the sample standard deviation for group male

First we can begin finding the pooled variance:

\S^2_p =\frac{(150-1)(119)^2 +(165 -1)(129)^2}{150 +165 -2}=15460.42

And the deviation would be just the square root of the variance:

S_p=124.340

And now we can calculate the statistic:

t=\frac{(520 -492)-(0)}{124.340\sqrt{\frac{1}{150}+\frac{1}{165}}}=1.996

And the most near value would be:

D. 2.004

You might be interested in
Choose the correct simplification of the expression (−2x + 8y)(9x − 3y).
Romashka-Z-Leto [24]
For these kinds of expressions use FOIL (first, outside, inside, last).

-2x • 9x = -18x^2
-2x • -3y = 6xy
8y • 9x = 72 xy
8y • -3y = -24y^2

Now combine them all:

-18x^2 + 78xy - 24y^2
6 0
3 years ago
Read 2 more answers
which description best describes the solution to the following system of equations y= -2x +3 y= -x + 1
marin [14]
For this case we have the following system of equations:
 y = -2x +3

y = -x + 1
 Equating the values of y we have:
 -2x +3 = -x + 1

 From here, we can clear the value of x.
 We have then:
 -2x + x = 1 - 3

-x = -2

x = 2
 Then, we look for the value of y.
 For this, we substitute x in any of the equations:
 y = -x + 1

y = -2 + 1

y = -1
 Answer:
 
The ordered pair solution of the system of equations, is given by:
 
(x, y) = (2, -1)
3 0
3 years ago
Read 2 more answers
There is a strong positive linear correlation between rainfall and the number of oranges a tree produces. Does this mean that mo
8_murik_8 [283]
No; just because there is a correlation does not prove causation. 

The correlation says that as the amount of rainfall increases, the amount of oranges produced increases as well.  It does not state what causes it.
5 0
3 years ago
Read 2 more answers
Identify all solutions for a triangle with A = 38 degrees b = 10, and a= 8. Round to the nearest tenth.
rjkz [21]

Answer:

A = 38°

B = 50.32°

C = 91.68°

a = 8

b = 10

c = 12.77

Step-by-step explanation:

The first thing is to find the angle B, like this:

sin B = b * sin A / a = 10 * sin (38 °) / 8

sin B = 0.77

B = arc sin (0.77)

B = 50.32 °

For angle C, it would be:

C = 180 - 38 - 50.32

C = 91.68 °

Side c, we calculate it like this:

c = a * sin C / sin A = 8 * sin (91.68 °) / sin (38 °)

c = 12.77

5 0
3 years ago
How can you solve 6+4/5B=9/10b
faltersainse [42]
6+\frac{4}{5}b=\frac{9}{10}b \ \ \ |-\frac{4}{5}b \\ \\
6=\frac{9}{10}b-\frac{4}{5}b \\ \\
6=\frac{9}{10}b-\frac{8}{10}b \\ \\
6=\frac{9-8}{10}b \\ \\
6=\frac{1}{10}b \ \ \ |\times 10 \\ \\
b=60
8 0
3 years ago
Other questions:
  • PLEASE HELP [99 POINTS] ONE QUESTION
    8·2 answers
  • 40 % of what amount is $256?
    14·1 answer
  • Please simplify....attached
    11·2 answers
  • A metal worker has several 1-kilogram bars of a metal alloy that contain 23% copper and several 1-kilogram bars that contain 79%
    15·1 answer
  • What is 9,000+900-3333
    6·2 answers
  • The figure shows a scale drawing of a room, and each square stands for 1 square foot. What is the area of the room in square yar
    14·2 answers
  • Evaluate the expression <br> 4^2-13
    12·2 answers
  • Solve for x plz. Ens
    9·1 answer
  • Which of the following is not equivalent to the expression below?
    12·1 answer
  • Ol-
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!