1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VikaD [51]
3 years ago
7

NEED ASAP WILL MARK BRAINLIEST!!!!

Mathematics
1 answer:
Paha777 [63]3 years ago
3 0

Answer

(40+y*0.02)+0.07

or

0.02y+40.07

Step-by-step explanation:

You might be interested in
Given f(x) = 5x4 – x2 + 6x – 1. What is Limit of f (x) as x approaches negative 1?
irinina [24]

Answer:

-3

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
A basketball player scored x, y, and z points in 3 games. Express the average number of points scored by the player in terms of
Anettt [7]
The average will be the total points divided by the number of games:

(x+y+z) / 3
7 0
4 years ago
The spoke of a wheel reaches from the center of the wheel to its rim. If the circumference of the rim of
never [62]
C = 2(pi)r....so we are looking for the radius (r)
42 = 2 * 3.14 * r
42 = 6.28r
42/6.28 = r
6.69 = r <===
4 0
3 years ago
Read 2 more answers
Find the area of the shaded region?<br> 3x + 1<br> 3x + 1
mash [69]
Im pretty sure its 3x + 1
7 0
3 years ago
7.2 Given a test that is normally distributed with a mean of 100 and a standard deviation of 10, find: (a) the probability that
kompoz [17]

Answer:

a)

<em>The probability that a single score drawn at random will be greater than 110  </em>

<em>P( X > 110) = 0.1587</em>

<em>b) </em>

<em>The probability that a sample of 25 scores will have a mean greater than 105</em>

<em>  P( x> 105) = 0.0062</em>

<em>c) </em>

<em>The probability that a sample of 64 scores will have a mean greater than 105</em>

<em> P( x⁻> 105)  = 0.002</em>

<em></em>

<em>d) </em>

<em> The probability that the mean of a sample of 16 scores will be either less than 95 or greater than 105</em>

<em>    P( 95 ≤ X≤ 105) = 0.9544</em>

<em></em>

Step-by-step explanation:

<u><em>a)</em></u>

Given mean of the Normal distribution 'μ'  = 100

Given standard deviation of the Normal distribution 'σ' = 10

a)

Let 'X' be the random variable of the Normal distribution

let 'X' = 110

Z = \frac{x-mean}{S.D} = \frac{110-100}{10} =1

<em>The probability that a single score drawn at random will be greater than 110</em>

<em>P( X > 110) = P( Z >1)</em>

                = 1 - P( Z < 1)

               =  1 - ( 0.5 +A(1))

               = 0.5 - A(1)

               = 0.5 -0.3413

              = 0.1587

b)

let 'X' = 105

Z = \frac{x-mean}{\frac{S.D}{\sqrt{n} } } = \frac{105-100}{\frac{10}{\sqrt{25} } } = 2.5

<em>The probability that a single score drawn at random will be greater than 110</em>

<em>  P( x> 105) = P( z > 2.5)</em>

<em>                    = 1 - P( Z< 2.5)</em>

<em>                    = 1 - ( 0.5 + A( 2.5))</em>

<em>                   = 0.5 - A ( 2.5)</em>

<em>                  = 0.5 - 0.4938</em>

<em>                  = 0.0062</em>

<em>The probability that a single score drawn at random will be greater than 105</em>

<em>  P( x> 105) = 0.0062</em>

<em>c) </em>

let 'X' = 105

Z = \frac{x-mean}{\frac{S.D}{\sqrt{n} } } = \frac{105-100}{\frac{10}{\sqrt{64} } } =  4

<em>The probability that a single score drawn at random will have a mean greater than 105</em>

<em>  P( x> 105) = P( z > 4)</em>

<em>                    = 1 - P( Z< 4)</em>

<em>                    = 1 - ( 0.5 + A( 4))</em>

<em>                   = 0.5 - A ( 4)</em>

<em>                  = 0.5 - 0.498</em>

<em>                  = 0.002</em>

<em> The probability that a sample of 64 scores will have a mean greater than 105</em>

<em> P( x⁻> 105)  = 0.002</em>

<em>d) </em>

<em>Let  x₁ = 95</em>

Z = \frac{x_{1} -mean}{\frac{S.D}{\sqrt{n} } } = \frac{95-100}{\frac{10}{\sqrt{16} } } =  -2

<em>Let  x₂ = 105</em>

Z = \frac{x_{1} -mean}{\frac{S.D}{\sqrt{n} } } = \frac{105-100}{\frac{10}{\sqrt{16} } } =  2

The probability that the mean of a sample of 16 scores will be either less than 95 or greater than 105

P( 95 ≤ X≤ 105) = P( -2≤z≤2)

                         = P(z≤2) - P(z≤-2)

                        = 0.5 + A( 2) - ( 0.5 - A( -2))

                      = A( 2) + A(-2)       (∵A(-2) =A(2)

                     =  A( 2) + A(2)  

                    = 2 × A(2)

                  = 2×0.4772

                  = 0.9544

<em> The probability that the mean of a sample of 16 scores will be either less than 95 or greater than 105</em>

<em>    P( 95 ≤ X≤ 105) = 0.9544</em>

<em>    </em>

7 0
3 years ago
Other questions:
  • Please help!!!! Solve using substitution
    6·1 answer
  • Question 16 (1 point)
    9·1 answer
  • 50 pts! what are the solutions of this quadratic equation? x^2+8x+3=0
    8·2 answers
  • Select the phrase from the drop-down menu to correctly complete to the sentence.
    10·2 answers
  • Ayúdenme con este ejercicio por favor:(
    6·1 answer
  • What does the quotient rule mean? subtracting ,adding ,multiplying or dividing​
    11·1 answer
  • matical Literacy Finance and Data Handling was determined. Explain why the bank omitted some digits from the account numbe state
    13·1 answer
  • Pls help me, the assignment is on the g00gle docs. I cant put it on here. Pls I need ligit help (remember in g00gle put o s inst
    8·1 answer
  • Can someone please explain how to find the answer please.
    15·1 answer
  • What is the name of the shape graphed by the function r = 2 cose? O A. Limaçon with inner loop O B. Lemniscate O C. Line O D. Ci
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!