Y-65=3(x-49) 3 is time 49 is crushed
So, this creates a triangle once again. If we imagine a slide, the slide itself would be the hypotenuse of the triangle, then if there's a ladder leading up to the slide, that would be the vertical length we're looking for. The feet across the ground would be the distance from the bottom of the slide to the bottom of the ladder.
We can use the Pythagorean theorem to find the missing side length, as this would create a right triangle. | 8^2 + b^2 = 10^2 | 64 + b^2 = 100 | b^2 = 36 | b = 6 feet | The slide is 6 feet high at its highest point.
Answer:
i think its b
Step-by-step explanation:
Answer:
The solution is (4,250)
Step-by-step explanation:
This means that when a member of either gym (A or B) signs up for a four-month membership, they pay the same amount - $250. Hope this helps :)
<span>In logic, the converse of a conditional statement is the result of reversing its two parts. For example, the statement P → Q, has the converse of Q → P.
For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the converse is 'if a figure is a parallelogram, then it is rectangle.'
As can be seen, the converse statement is not true, hence the truth value of the converse statement is false.
</span>
The inverse of a conditional statement is the result of negating both the hypothesis and conclusion of the conditional statement. For example, the inverse of P <span>→ Q is ~P </span><span>→ ~Q.
</span><span><span>For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the inverse is 'if a figure is not a rectangle, then it is not a parallelogram.'
As can be seen, the inverse statement is not true, hence the truth value of the inverse statement is false.</span>
</span>
The contrapositive of a conditional statement is switching the hypothesis and conclusion of the conditional statement and negating both. For example, the contrapositive of <span>P → Q is ~Q → ~P. </span>
<span><span>For the given statement, 'If a figure is a rectangle, then
it is a parallelogram.' the contrapositive is 'if a figure is not a parallelogram,
then it is not a rectangle.'
As can be seen, the contrapositive statement is true, hence the truth value of the contrapositive statement is true.</span> </span>