Answer:
SAS theorem
Step-by-step explanation:
Given
![\square ABCD](https://tex.z-dn.net/?f=%5Csquare%20ABCD)
![\[ \lvert \[ \lvert AB =\[ \lvert \[ \lvert CD](https://tex.z-dn.net/?f=%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20AB%20%3D%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20CD)
![\angle BAC = \angle DCA](https://tex.z-dn.net/?f=%5Cangle%20BAC%20%3D%20%5Cangle%20%20DCA)
Required
Which theorem shows △ABE ≅ △CDE.
From the question, we understand that:
AC and BD intersects at E.
This implies that:
![\[ \lvert \[ \lvert AE = \[ \lvert \[ \lvert EC](https://tex.z-dn.net/?f=%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20AE%20%3D%20%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20EC)
and
![\[ \lvert \[ \lvert BE = \[ \lvert \[ \lvert ED](https://tex.z-dn.net/?f=%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20BE%20%3D%20%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20ED)
So, the congruent sides and angles of △ABE and △CDE are:
---- S
---- A
or
--- S
<em>Hence, the theorem that compares both triangles is the SAS theorem</em>
Answer: 4 - (xxx/555)
Explanation:
four less = four minus
quotient = the answer of a division problem
a number = the variable
the quotient of a number xxx and 555 = a number xxx divided by 555
Answer:
82
Step-by-step explanation:
f(x) = 5x - 3
g(x) = 2x + 9
f(g(x)) = 5 (2x + 9) - 3 ..... replace x with g(x)
f(g(4)) = 5 * (2 * 4 + 9) -3 = 85 - 3 = 82
First you solve for y.
5x+ y= 12 so Y= 12-5x
And plug it into the next equation
3x- 3(12-5x) = 18
Distribute
3x-36+15x=18
Add 36 to both sides
3x+ 15x= 54
18x= 54 ... divide
x= 3
And you can plug in x to solve for Y
5(3) + y = 12
15+ y = 12 ...subtract 15 from both sides
y= -3