The answer is C. Hope that helps
Fill in each slot in the square with variables <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em>, and <em>e</em>, in order from left-to-right, top-to-bottom. In a magic square, the sums across rows, columns, and diagonals all add up to the same number called the <em>magic sum</em>.
The magic sum is -3.9, since "diagonal 2" (bottom left to top right) has all the information we need:
3 + (-1.3) + (-5.6) = -3.9
Use this to find the remaining elements
<em>a</em> + <em>b</em> + (-5.6) = -3.9
<em>c</em> + (-1.3) + <em>d</em> = -3.9
3 + <em>e</em> + 0.02 = -3.9
<em>a</em> + <em>c</em> + 3 = -3.9
<em>b</em> + (-1.3) + <em>e</em> = -3.9
(-5.6) + <em>d</em> + 0.02 = -3.9
- diagonal 1 (top left to bottom right):
<em>a</em> + (-1.3) + 0.02 = -3.9
You will find
<em>a</em> = -2.62
<em>b</em> = 4.32
<em>c</em> = -4.28
<em>d</em> = 1.68
<em>e</em> = -6.92
Answer:
Total area = 237.09 cm²
Step-by-step explanation:
Given question is incomplete; here is the complete question.
Field book of an agricultural land is given in the figure. It is divided into 4 plots. Plot I is a right triangle, plot II is an equilateral triangle, plot III is a rectangle and plot IV is a trapezium, Find the area of each plot and the total area of the field. ( use √3 =1.73)
From the figure attached,
Area of the right triangle I = 
Area of ΔADC = 
= 
= 
= 
= 
= 30 cm²
Area of equilateral triangle II = 
Area of equilateral triangle II = 
= 
= 73.0925
≈ 73.09 cm²
Area of rectangle III = Length × width
= CF × CD
= 7 × 5
= 35 cm²
Area of trapezium EFGH = 
Since, GH = GJ + JK + KH
17 = 
12 = 
144 = (81 - x²) + (225 - x²) + 2
144 - 306 = -2x² + 
-81 = -x² + 
(x² - 81)² = (81 - x²)(225 - x²)
x⁴ + 6561 - 162x² = 18225 - 306x² + x⁴
144x² - 11664 = 0
x² = 81
x = 9 cm
Now area of plot IV = 
= 99 cm²
Total Area of the land = 30 + 73.09 + 35 + 99
= 237.09 cm²
Answer:
-22
Step-by-step explanation:
set y equal to zero and solve like a regular singular variable equation