The number of moles in 3.612 x 10²⁴ molecules of CaO is 6 moles.
<h3>
Number of moles in the molecules</h3>
The number of moles in 3.612 x 10²⁴ molecules of CaO is calculated as follows;
6.02 x 10²³ molecules = 1 mole
3.612 x 10²⁴ molecules = ?
= (3.612 x 10²⁴ ) / (6.02 x 10²³ )
= 6 moles
Thus, the number of moles in 3.612 x 10²⁴ molecules of CaO is 6 moles.
Learn more about number of moles here: brainly.com/question/15356425
Explanation:
When water is frozen then it is known as ice and its state is solid. So, its molecules will be held closer to each other as they are held by strong intermolecular forces of attraction.
As a result, its temperature will be minimum as its molecules have least kinetic energy.
It is known that kinetic energy of a substance is directly proportional to temperature.
As, K.E =
where K.E = kinetic energy
T = temperature
k = boltzmann constant
When solid changes into liquid state then it means molecules of a substance has gained kinetic energy due to which there occurs more collisions between the molecules.
Hence, temperature of substance also increases.
Whereas when liquid state of a substance changes intro vapor state then it means that more kinetic energy has gained by the molecules due to which there will be much more collisions between the molecules.
Hence, temperature will be maximum in vapor state.
8.98
×
N
A
cobalt atoms
Explanation:
N
A
,
Avogadro's number
specifies
6.0221
×
10
23
individual particles. It is simply another collective number like a dozen, or a score, or a gross.
N
A
has the property that
6.0221
×
10
23
individual cobalt atoms has a mass of
58.93
⋅
g
. How did I know that? Did I have it memorized?
So the quantity is
≈
54
×
10
23
cobalt atoms.