To calculate the relative vector of B we have to:
![P_B=\left[\begin{array}{ccc}3\\3\\-2\\3/2\end{array}\right]](https://tex.z-dn.net/?f=P_B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C3%5C%5C-2%5C%5C3%2F2%5Cend%7Barray%7D%5Cright%5D)
The coordenates of:
, with respect to B satisfy:

Equating coefficients of like powers of t produces the system of equation:

After solving this system, we have to:

And the result is:
![P_B=\left[\begin{array}{ccc}3\\3\\-2\\3/2\end{array}\right]](https://tex.z-dn.net/?f=P_B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C3%5C%5C-2%5C%5C3%2F2%5Cend%7Barray%7D%5Cright%5D)
Learn more: brainly.com/question/16850761
(not <em>a</em> or not <em>b</em>) implies <em>c</em> <==> not (not <em>a</em> or not <em>b</em>) or <em>c</em>
so negating gives
not [(not <em>a</em> or not <em>b</em>) implies <em>c</em>] <==> not[ not (not <em>a</em> or not <em>b</em>) or <em>c</em>]
which we can simplify somewhat to
not (not (not <em>a</em> or not <em>b</em>)) and not <em>c</em>
(not <em>a</em> or not <em>b</em>) and not <em>c</em>
(not <em>a</em> and not <em>c</em>) or (not <em>b</em> and not <em>c</em>)
not (<em>a</em> or <em>c</em>) or not (<em>b</em> or <em>c</em>)
not ((<em>a</em> or <em>c</em>) and (<em>b</em> or <em>c</em>))
not ((<em>a</em> and <em>b</em>) or <em>c</em>)
I presume you're talking about number 3?
Solution
I = prt (I being the interest)
I =

I = 1,250$