1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yulyashka [42]
3 years ago
5

A recent study done by the National Retail Federation found that 2019 back-to-school spending for all US households who have sch

ool-aged children follows a Normal distribution with mean $697 and a standard deviation $120. Use this information to answer the following questions. (a) What is the probability that 2019 back-to-school spending for a US household with school- aged children is greater than $893? Answer this question by completing parts 2(a)i and 2(a)ii. i. Provide the z-score corresponding to the 2019 back-to-school spending of $893. ii. Based on your answer in 2(a)i, what is the probability of 2019 back-to-school spending for a US household with school-aged children is greater than $893? (b) Free response submission. Provide the 2-score corresponding to the 2019 back-to- school spending of $1,200, and the probability of 2019 back-to-school spending for a house- hold with school-aged children is less than $1,200. (c) Find Q3 (Third Quartile). Answer this question by completing parts 2(c)i. and 2(c)ii. i. Provide the z-score corresponding to Q3. ii. Based on your answer in 2(c)i, provide the value of Q3. (d) Find Q1 (First Quartile). Answer this question by completing parts 2(d)i and 2(d)ii. i. Provide the z-score corresponding to Q1. ii. Based on your answer in 2(d)i, provide the value of Qı. (e) What is the value of the IQR for the distribution of 2019 back-to-school spending for a US household with school-aged children? (f) Free response submission. Interpret the value of the IQR from question 2e within the context of the problem. (g) What is the proportion of 2019 back-to-school spending within 1.50 standard deviations of the mean? Answer this question by completing parts 2(g)i. through 2(g)iii. i. Provide the SMALLER 2-score corresponding to the above statement. ii. Provide the LARGER z-score corresponding to the above statement. iii. Based on your answers in 2(g)i and 2(g)ii, what proportion of 2019 back-to-school spending is within 1.50 standard deviations of the mean? (h) What is the 2019 back-to-school spending amount such that only 3% of households with school-age children spend more than this amount? i. Provide the z-score corresponding to the top 3%. ii. Based on your answer in 2(h)i, provide the spending amount such that only 3% of households with school-age children spend more than this amount? (i) Free response submission. Which US household is more unusual, a US household with back-to-school spending of $600 or a US household with back-to-school spending of $900? Explain your answer. (j) Free response submission. Let's say the Smith family spent $815 on buying school supplies this fall. Provide an interpretation of the Smith family's 2019 back-to-school spending, i.e. what can you say about the percentage of all other US households with school-age children that have a higher back-to-school spending than the Smith family?
Mathematics
1 answer:
MissTica3 years ago
6 0

Answer:

Step-by-step explanation:

Hello!

The working variable is:

X: Back-to-school expense of a US household with school-aged children.

X~N(μ;σ²)

μ= $697

σ= $120

a. What is the probability that 2019 back-to-school spending for a US household with school-aged children is greater than $893?

Symbolically: P(X>$893)

First, you standardize the probability using Z= (X-μ)/σ ~N(0;1)

P(X>$893)= P(Z>(893-697)/120)= P(Z>1.63)

To resolve this question you have to use the table of cumulative probabilities for the standard normal distribution. These tables accumulate probabilities from the left, symbolically P(Z≤Z₀), so to reach probabilities greater than a Z₀ value you have to subtract the cumulative probability until that value from the maximum probability value 1:

P(Z>1.63)= 1 - P(Z≤1.63)= 1 - 0.94845= 0.05155

b. Provide the Z-score corresponding to the 2019 back-to-school spending of $1,200, and the probability of 2019 back-to-school spending for a household with school-aged children is less than $1,200.

P(X<$1200) = P(Z<(1200-697)/120)= P(Z<4.19)= 1

According to the empirical rule of the normal distribution, 99% of the data is between μ ± 3σ. This, logically, applies to the standard normal distribution. Considering that the distribution's mean is zero and the standard deviation is one, then 99% of the probabilities under the standard normal distribution are within the Z values: -3 and 3, values below -3 will have a probability equal to zero and values above 3 will have probability equal to one.

c. Find Q3 (Third Quartile).

Q3 in the value that marks three-quarters of the distribution, in other words, it has 75% of the distribution below it and 25% above, symbolically:

P(Z≤c)=0.75

In this case, you have to look in the center of the right Z-table (positive) for the probability of 0.75 and then the margins to find the Z-score that belongs to that cumulative probability:

c= 0.674

Now you reverse the standardization to see what value of X belongs to the Q3:

c= (X-μ)/σ

X= (c*σ)+μ

X= (0.674*120)+697= $777.88

d. Find Q1 (First Quartile)

To resolve this you have to follow the same steps as in c., just that this time you'll look for the value that marks the first quarter of the distribution, symbolically:

P(Z≤d)= 0.25

In this case, since the probability is below 0.5 you have to look for the Z value in the left table (negative).

d= -0.674

d= (X-μ)/σ

X= (d*σ)+μ

X= (-0.674*120)+697= $616.12

e. What is the value of the IQR for the distribution of 2019 back-to-school spending for a US household with school-aged children?

IQR= Q3-Q1= $777.88 - $616.12= $161.76

f. Interpret the value of the IQR from question 2e within the context of the problem.

$161.76 represents the distance between 75% of the Back-to-school expense of a US household 25% of the Back-to-school expense of US households.

g. What is the proportion of 2019 back-to-school spending within 1.50 standard deviations of the mean?

"Within 1.50 standard deviations of the mean" can be symbolized as "μ ± 1.5σ" or "μ - 1.5σ≤ Z ≤μ + 1.5σ"

P(μ - 1.5σ≤ Z ≤μ + 1.5σ)

Since the mean is zero and the standard deviation is one:

P(-1.5 ≤ Z ≤ 1.5)= P(Z≤1.5) - P(Z≤-1.5)= 0.933 - 0.067= 0.866

h. What is the 2019 back-to-school spending amount such that only 3% of households with school-age children spend more than this amount?

The "top" 3% means that you are looking for a value of the variable that has above it 0.03 of probability and below it 0.97%, first you look for this value under the standard normal distribution and then you reverse the standardization to reach the corresponding value of the variable:

P(Z>h)= 0.03 ⇒ P(Z≤h)=0.97

h= 1.881

h= (X-μ)/σ

X= (h*σ)+μ

X= ( 1.881*120)+697= $922.72

i. Which US household is more unusual, a US household with back-to-school spending of $600 or a US household with back-to-school spending of $900?

Under this kind of distribution, the "most usual" values are around the center (near the mean) and the "unusual" values will find themselves in the tails of the Gaussian bell.

To check which one is more unusual you have to see their distance with respect to the mean.

(X-μ)/σ

(600-697)/120= -0.8083

(900-697)/120= 1.69

An expense of $900 is more unusual than an expense of $600 (600 is almost the expected expenses)

j. Let's say the Smith family spent $815 on buying school supplies this fall. Provide an interpretation of the Smith family's 2019 back-to-school spending, i.e. what can you say about the percentage of all other US households with school-age children that have higher back-to-school spending than the Smith family?

P(X>$815) = P(Z>(815-697)/120)= P(Z>0.98)

1-P(Z≤0.983)= 0.837

83.7% of the families will have back-to-school expenses of $815 or more.

I hope it helps!

You might be interested in
Refer to the figure and the information shown below to answer the following questions: (a) Name two similar triangles in the fig
DerKrebs [107]

Step-by-step explanation:

I'd 78394327272 PWD DK2iW8

4 0
3 years ago
Any help please for my class
sesenic [268]

Answer:

Step-by-step explanation:

do 700/20

700/20 = $35 each

hope this helps <3

4 0
3 years ago
Read 2 more answers
Different ways to make the number 15,638 with only hundreds,tens,and ones
Svetlanka [38]
1500 ➕600 ➕30➕ 8 it is very. is easy. to me
7 0
3 years ago
2 less than the produxt of 4 and 3
Andrej [43]
Write it how you say it, product means multiply
7 0
3 years ago
Please help me Please this is due today
Tasya [4]

Answer:

See Below.

Step-by-step explanation:

By the Factor Theorem, if we divide <em>q(x)</em> into <em>p(x) </em>and the resulting remainder is 0, then <em>p(x)</em> is divisible by <em>q(x)</em> (i.e. there are no remainders).

Problem 1)

We are given:

p(x)=x^3+3x^2+3x+1\text{ and } q(x)=x+1

We should find the remainder when dividing <em>p(x)</em> and <em>q(x)</em>. We can use the Polynomial Remainder Theorem. When dividing a polynomial <em>p(x)</em> by a binomial in the form of (<em>x</em> - <em>a</em>), then the remainder will be <em>p(a).</em>

Here, our divisor is (<em>x</em> + 1) or (<em>x</em> - (-1)). So, <em>a </em>= -1.

Then by the Polynomial Remainder Theorem, the remainder when performing <em>p(x)/q(x)</em> is:

p(-1)=(-1)^3+3(-1)^2+3(-1)+1=0

The remainder is 0, satisfying the Factor Theorem. <em>p(x)</em> is indeed divisible by <em>q(x)</em>.

Problem 2)

We are given:

p(x)=x^3-2x^2+6x-27\text{ and } q(x)=x-3

Again, use the PRT. In this case, <em>a</em> = 3. So:

p(3)=(3)^3-2(3)^2+6(3)-27=0

It satisfies the Factor Theorem.

Problem 3)

We are given:

p(x)=x^n-10^n\text{ and } q(x)=x-10

Use the PRT. In this case, <em>a</em> = 10. So:

p(10)=(10)^n-10^n=0

It satisfies the Factor Theorem.

Since all three cases satisfy the Factor Theorem, <em>p(x)</em> is divisible by <em>q(x)</em> in all three instances.

7 0
2 years ago
Other questions:
  • Rewrite without parenthesis and simplify (y+6)^2
    11·2 answers
  • Last year, the average math SAT score for students at one school was 475. The headmaster then introduced a new teaching method h
    11·2 answers
  • Please help me with this
    12·1 answer
  • Needing help with writing correct answer for this question
    6·1 answer
  • Henry needs 2 pints of red paint and 3 pints of yellow paint to get a specific shade of orange. If he uses 9 pints of yellow pai
    8·2 answers
  • The sum of three consecutive multiples"<br>of 8 is 192. Find the multiples.​
    7·2 answers
  • PLS HELP I DONT REMEMBER HOW TO DO THIS
    10·1 answer
  • Marty went shopping for school supplies. He bought a package of pens for $2.25, a package of paper for $3.25, a notebook for $5.
    9·1 answer
  • Samuel can do 120 jumping jacks in two minutes.
    12·2 answers
  • Simplify using trigonometric identities<br> 2sinθ - sin2θ cosθ
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!