<span>6.12<span>(<span>1024</span>)</span></span><span>=<span><span>(6.12)</span><span>(<span><span>1e</span>+24</span>)</span></span></span><span>=<span><span>6.12e</span>+24</span></span>
<span>
=
</span>
Correct question
The density of liquid mercury is 13.6 g/mL. What is its density in units of lb/in3? (2.5 cm = 1 in., 2.205 lbs= 1 kg., 1000 g =1 kg, 1 mL = 1 cm³)
Answer:

Explanation:
Given that;-
The density = 13.6 g/mL
Also, 1 kg = 2.205 lb
1 kg = 1000 g
So, 1000 g = 2.205 lb
1 g = 0.002205 lb
Also,
1 in = 2.54 cm
1 in³ = 16.39 cm³
1 cm³ = 1 mL
So, 1 in³ = 16.39 mL
1 mL = 0.061 in³
The expression for the calculation of density is shown below as:-

Thus,

I believe <span>Na2SO3 is the solution to the problem.</span>
Answer:
A) involves changes in temperature
Explanation:
The figure is missing, but I assume that the region marked X represents the region in common between Gay-Lussac's law and Charle's Law.
Gay-Lussac's law states that:
"For an ideal gas kept at constant volume, the pressure of the gas is directly proportional to its absolute temperature"
Mathematically, it can be written as

where p is the pressure of the gas and T its absolute temperature.
Charle's Law states that:
"For an ideal gas kept at constant pressure, the volume of the gas is directly proportional to its absolute temperature"
Mathematically, it can be written as

where V is the volume of the gas and T its absolute temperature.
By looking at the two descriptions of the law, we see immediately that the property that they have in common is
A) involves changes in temperature
Since the temperature is NOT kept constant in the two laws.