The law of definite proportions agrees with Dalton atomic theory.
What is Dalton atomic theory?
It state that all matters is made of very tiny particles called atom. atoms are individual particles which can not be created or be destroyed in a chemical reactions. Atoms of given elements are identical in mass and chemical properties. Atoms of
different elements have different masses and chemical properties.
The law of definite proportions also known as proust's law ,state that a chemical compound contain the same proportion of elements by mass.this law is one of the stoichiometry .
Thus ,
This is the reason why it is agrees with dalton atomic theory.
To know more about Dalton atomic theory click-
brainly.com/question/13157325
#SPJ1
Answer: Hope This Helps!
Explanation:
Physics is the scientific study of matter and energy and how they interact with each other. This energy can take the form of motion, light, electricity, radiation, gravity — just about anything, honestly.
The chemical formula of a compound express the atoms by which the molecule is formed and the ratio of the atoms in which they are combined.
The space filling model of a compound describe the electron density in the compound of each atom.
The ball and stick arrangement of a compound describe the way in which the molecules are present in three dimensions.
The structural formula state the number of atoms present in the molecule, the type of element or atom present in the molecule and the way in which they are arranged closely which is the bond.
Thus only the structural formula only will cover all the options as stated.
Explanation:
oxidation of Nitrogen in NO2 is +4
Sulfur has two filled energy levels and six electrons on the third energy level. The corresponding electron configuration is A.
B is incorrect because there are no p orbitals at the first energy level, ie, no 1p orbitals. C is incorrect because the 4s1 electron would spontaneously drop into the 3p orbitals. D is incorrect because the 3d electrons would spontaneously drop into the 3p orbitals.