The answer is 6.88.
Solution:
We can calculate for the percent composition of CaCl2 by mass by dividing the mass of the CaCl2 solute by the mass of the solution and then multiply by 100. The total mass of the resulting solution is the sum of the mass of CaCl2 solute and the mass of water solvent. Therefore, the percent composition of CaCl2 by mass is
% by mass = (mass of the solute / mass of the solution)*100
= mass of solute / (mass of the solute + mass of the solvent)*100
= (27.7 g CaCl2 / 27.7g + 375g) * 100
= 6.88
Answer:
d
Explanation:
sugar molecules are being broken down
Answer:
a.) 22.4 L Ne.
Explanation:
It is known that every 1.0 mol of any gas occupies 22.4 L.
For the options:
<em>It represents </em><em>1.0 mol of Ne.</em>
<em />
using cross multiplication:
1.0 mol occupies → 22.4 L.
??? mol occupies → 20 L.
The no. of moles of (20 L) Ar = (1.0 mol)(20 L)/(22.4 L) = 0.8929 mol.
using cross multiplication:
1.0 mol occupies → 22.4 L.
??? mol occupies → 2.24 L.
<em>The no. of moles of (2.24 L) Xe </em>= (1.0 mol)(2.24 L)/(22.4 L) = <em>0.1 mol.</em>
- So, the gas that has the largest number of moles at STP is: a.) 22.4 L Ne.
Answer:
the standard cell potential value
Explanation:
For every cell, we can calculate its standard electrode potential from the table of standard electrode potentials listed in many textbooks.
However, from Nernst's equation;
Ecell= E°cell - 0.0592/n log Q
Hence the standard cell potential (E°cell) affects the value of the calculated cell potential Ecell from Nernst's equation as stated above.
Answer:
Esters have lower boiling point than alcohols.
Explanation:
Esters are the fruity smelling compounds which are formed from carboxylic acid and alcohol with the removal of water.
The general formula for the ester is RCOOR' which is prepared from RCOOH acid and R'OH alcohol.
Ester can not form strong hydrogen bond as there is no hydrogen attached to the electronegative atom in the ester and thus cannot form hydrogen bonds with each other.<u> Due to this factor, the interactions within the molecules of the ester is lower than that of alcohols which exist in strong hydrogen bonding. As a result, ester can be easily boiled when compared to the alcohols and thus they have lower value of boiling points.</u>