2 n/3 would be the closest answer although it looks as if the 2 is supposed to be multiplied by n/3 which would lead me to write it as 2(n/3)
The answer is D. He divided both sides by 5 instead of dividing both sides by -5.
What you have to do to find the median of the data is first put that data into order numerically. You can go largest to smallest or smallest to largest, it doesn't matter. <span>
22, 24, 28, 28, 30, 31, 31, 32, 32, 35, 36, 37, 38, 41, 42, 42, 44, 44, 45, 46, 46, 47, 47, 49, 50
Once you put them into order, you count towards the middle. You have 25 data points, so the middle, which will be your median number, will be 13 points in.
The median is 38</span>
9514 1404 393
Answer:
Left: area: 702 square feet; perimeter: 114 feet
Right: area: 20 square inches; perimeter: 24 inches
Step-by-step explanation:
<u>Left Figure</u>
The unmarked horizontal edge of the figure is 30 ft -24 ft = 6 ft long. The area of the figure can be figured as the difference between the 27 ft by 30 ft enclosing rectangle, and the 18 ft by 6 ft "notch" taken from the upper right corner of that.
area = (27 ft)(30 ft) -(18 ft)(6 ft) = 810 ft² -108 ft² = 702 ft²
The perimeter is the sum of the side lengths. The sum of vertical side lengths is 2×27 ft; the sum of horizontal side lengths is 2×30 ft, so the perimeter is ...
54 ft +60 ft = 114 ft . . . perimeter
__
<u>Right Figure</u>
The unmarked horizontal segment at the top of the figure is 7 in -3 in -2 in = 2 inches long. This means the area can be divided into two rectangles: the bottom one 2 in by 7 in, and the one sticking up from that 3 in by 2 in. The total area of the figure will be ...
(2 in)(7 in) +(3 in)(2 in) = 14 in² +6 in² = 20 in² . . . area
The perimeter is the sum of the side lengths. The sum of vertical side lengths is 2×(2 in+3 in), and the sum of horizontal side lengths is 2×7 in. Then the perimeter is ...
2×(5 in) +2×(7 in) = 10 in +14 in = 24 in . . . perimeter