Answer:
It has no slope because x 2 minus x 1 in the formula m = StartFraction y 2 minus y 1 Over x 2 minus x 1 EndFraction is zero, and the denominator of a fraction cannot be zero.
Step-by-step explanation:
Points:
Slope-intercept form:
slope is:
- m= (y2-y1)/(x2-x1)= (20-10)/(7-7)= 10/0,
denominator of the fraction is zero, we can't divide by zero, so this line has no slope
----------
It has a slope of zero because x 2 minus x 1 in the formula m = StartFraction y 2 minus y 1 Over x 2 minus x 1 EndFraction is zero, and the numerator of a fraction cannot be zero.
- no, numerator is not zero
It has a slope of zero because x 2 minus x 1 in the formula m = StartFraction y 2 minus y 1 Over x 2 minus x 1 EndFraction is zero, and the denominator of a fraction cannot be zero.
It has no slope because x 2 minus x 1 in the formula m = StartFraction y 2 minus y 1 Over x 2 minus x 1 EndFraction is zero, and the numerator of a fraction cannot be zero.
- no, numerator is not zero
It has no slope because x 2 minus x 1 in the formula m = StartFraction y 2 minus y 1 Over x 2 minus x 1 EndFraction is zero, and the denominator of a fraction cannot be zero.
I believe that the answer is 120 marbles.<span />
9514 1404 393
Answer:
779.4 square units
Step-by-step explanation:
You seem to have several problems of this type, so we'll derive a formula for the area of an n-gon of radius r.
One central triangle will have a central angle of α = 360°/n. For example, a hexagon has a central angle of α = 360°/6 = 60°. The area of that central triangle is given by the formula ...
A = (1/2)r²sin(α)
Since there are n such triangles, the area of the n-gon is ...
A = (n/2)r²sin(360°/n)
__
For a hexagon (n=6) with radius 10√3, the area is ...
A = (6/2)(10√3)²sin(360°/6) = 450√3 ≈ 779.4 . . . . square units
Answer:
3/7=€24/? 24*7/3? Therefore Hannah received €56 as tip.
Step-by-step explanation:
The original statement is true!
the converse: If 2 lines do not intersect, they are parallel
the converse is false, the lines could be skew.
Hope this helped :)