Take Saturdays total of $620 and subtract Fridays total of $460 to get $160. Divide that by the difference of the number of pies sold on Friday and Saturday to get $8. Take the $8 and multiply by number of pies sold on Friday (20) to get $160. Take that number and subtract it from the total sold on Friday ($460) to get $300. Divide that by how many cakes were sold on Friday (30) and get $10.
So therefore:
Pies - $8 each
Cakes - $10 each
Answer:
1. Consistent equations
x + y = 3
x + 2·y = 5
2. Dependent equations
3·x + 2·y = 6
6·x + 4·y = 12
3. Equivalent equations
9·x - 12·y = 6
3·x - 4·y = 2
4. Inconsistent equations
x + 2 = 4 and x + 2 = 6
5. Independent equations
y = -8·x + 4
8·x + 4·y = 0
6. No solution
4 = 2
7. One solution
3·x + 5 = 11
x = 2
Step-by-step explanation:
1. Consistent equations
A consistent equation is one that has a solution, that is there exist a complete set of solution of the unknown values that resolves all the equations in the system.
x + y = 3
x + 2·y = 5
2. Dependent equations
A dependent system of equations consist of the equation of a line presented in two alternate forms, leading to the existence of an infinite number of solutions.
3·x + 2·y = 6
6·x + 4·y = 12
3. Equivalent equations
These are equations with the same roots or solution
e.g. 9·x - 12·y = 6
3·x - 4·y = 2
4. Inconsistent equations
Inconsistent equations are equations that are not solvable based on the provided set of values in the equations
e.g. x + 2 = 4 and x + 2 = 6
5. Independent equations
An independent equation is an equation within a system of equation, that is not derivable based on the other equations
y = -8·x + 4
8·x + 4·y = 0
6. No solution
No solution indicates that the solution is not in existence
Example, 4 = 2
7. One solution
This is an equation that has exactly one solution
Example 3·x + 5 = 11
x = 2
Answer and Step-by-step explanation:
We are not given the function in question, but in order to explain, will form a function. Suppose f(x) = 3x + 2.
If f(x) = 17, then
3x + 2 = 17, to find the value of x, we have solve for x in the equation.
3x = 17 – 2
3x = 15
x = 5
This is the method that can be used to solve problems of this nature.
Answer:
Ф = 
Step-by-step explanation:
It is a bit difficult to input the work here, so I uploaded an image
- First we can use the trig identities to change sec²(Ф) to tan²(Ф) + 1
- Then we can combine like terms
- Then we can factor this as a polynomial function
- Then we can set each term equal to zero and solve for Ф
- The first term tan(Ф) - 2 = 0 has no solution because tan(Ф) ≠ -2 anywhere
- The second term tan(Ф) - 1 = 0 has two solutions of
and
so these are the solutions to the problem