Answer: Irrational
Step-by-step explanation:
When you multiply two complex numbers given in polar form, the argument of the product is the sum of the arguments of the factors. Meanwhile, the modulus of the product is the product of the moduli of the factors.
In this case, you'd have

and the modulus would simply be

. Since

we would expect the final product to fall in the first quadrant.
Step-by-step explanation:
well first try by addding the numbers and then dived it by 2
Answer:
<em>l = w + 3cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm </em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 </em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:l = (13cm) + 3cm = 16cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:l = (13cm) + 3cm = 16cmStep-by-step explanation:</em>
I hope this helps you.