Answer:
98
Step-by-step explanation:
f(x) = 10x² + 8
= 10(-3)² + 8
= 10 (9) + 8
= 90 + 8
= 98
Answer:
The value of n is -6
Step-by-step explanation:
- If the function f(x) is translated k units up, then its image is g(x) = f(x) + k
- If the function f(x) is translated k units down, then its image is g(x) = f(x) - k
- The vertex form of the quadratic function is f(x) = a(x - h)² + k, where a is the coefficient of x² and (h, k) is the vertex
∵ k(x) = x²
→ Its graph is a parabola with vertex (0, 0)
∴ The vertex of the prabola which represents it is (0, 0)
∵ The given graph is the graph of p(x)
∵ Its vertex is (0, -6)
∴ h = 0 and k = -6
∵ a = 1
→ Substitute them in the form above
∴ p(x) = 1(x - 0)² + -6
∴ p(x) = x² - 6
→ Substitute x² by k(x)
∴ p(x) = k(x) - 6
∵ p(x) = k(x) + n
→ By comparing the two right sides
∴ n = -6
∴ The value of n is -6
Look at the attached figure for more understanding
The red parabola represents k(x)
The blue parabola represents p(x)
Answer:
μ = 5.068 oz
Step-by-step explanation:
Normal distribution formula to use the table attached
Z = (x - μ)/σ
where μ is mean, σ is standard deviation, Z is on x-axis and x is a desired point.
98% of 6-oz. cups will not overflow means that the area below the curve is equal to 0.49; note that the curve is symmetrical respect zero, so, 98% of the cases relied between the interval (μ - some value) and (μ + some value)].
From table attached, area = 0.49 when Z = 2.33. From data, σ = 0.4 oz and x = 6 oz (maximum capacity of the cup). Isolating x from the formula gives
Z = (x - μ)/σ
2.33 = (6 - μ)/0.4
μ = 6 - 2.33*0.4
μ = 5.068
This means that with a mean of 5 oz and a standard deviation of 0.4 oz, the machine will discharge a maximum of 6 oz in the 98% of the cases.
5.B
6.D
7.A
8.B
9.A
10.C hsvs whehsg