
From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm find the radius of the circle.

Here, O is the center of the circle.
<u>⟼</u><u> </u><u>Given</u><u> </u><u>:</u>
<u>⟼</u><u> </u><u>To</u><u> </u><u>Find</u><u> </u><u>:</u><u> </u> We have to find the radius OP.
Since QP is tangent, OP perpendicular to QP.
(Since, Tangent is Perpendicular to Radius ⠀⠀⠀⠀⠀⠀⠀at the point of contact)
So, ∠OPQ=90°
<u>⟼</u><u> </u><u>By</u><u> </u><u>Applying</u><u> </u><u>Pythagoras</u><u> </u><u>Theorem</u><u> </u><u>:</u>
OP² + RQ² = OQ²
OP² + (24)² = (25)²
OP² = 625 - 576
OP² = 49
OP = √49
<u>OP</u><u> </u><u>=</u><u> </u><u>7</u><u> </u><u>cm</u>
<u>Hence</u><u>,</u><u> </u><u>The</u><u> </u><u>Radius</u><u> </u><u>is</u><u> </u><u>7</u><u> </u><u>cm</u>
⠀⠀
⠀
<h3>-MissAbhi</h3>
Answer:
3/10
Step-by-step explanation:
so 1/5 probability
3 is the frequency so
10 times spun
3/10 is the answer
Step-by-step explanation:

Answer:
The second base of the trapezoid b2 is 2.5 inches
Step-by-step explanation:
Here, we want to calculate the second base of the trapezoid.
Mathematically, the area of a trapezoid can be given as;
A = 1/2(a + b) h
where a and b represents the parallel bases and h is the height of the trapezoid
so this, we have from the question
1/2(4.5 + b2) * 6 = 21
3(4.5 + b2) = 21
divide both sides by 3
4.5 + b2 = 7
b2 = 7-4.5
b2 = 2.5 inches