Answer:
Step-by-step explanation:
From the attached photo
mean = 15.76
Standard deviation = 1.66
c) We want to determine a 90% confidence interval for the mean growth of pea plants
For a confidence level of 90%, the corresponding z value is 1.645. This is determined from the normal distribution table.
We will apply the formula
Confidence interval
= mean ± z ×standard deviation/√n
It becomes
15.76 ± 1.645 × 1.66/√7
= 15.76 ± 1.645 × 0.63
= 15.76 ± 1.04
The lower end of the confidence interval is 15.76 - 1.04 =14.72
The upper end of the confidence interval is 15.76 + 1.04 =16.8
Answer:
3000 dollars
Step-by-step explanation:
because 8000 minus 5000 equqls 3000 dollars. write this "the shop had a 3000 dollar change in the sales between the two months"
9/20 because you can divide them in half but you can divide them any further.
The complete question is
"A 4 inch by 6 inch picture is placed in a frame that creates a uniform border of x inches around the picture. The area of the entire frame (including where the picture is placed) is equal to 55.25 square inches.
What will be the width and length of the frame?"
The width of the frame is 4+2x, and the length of the frame is 6+2x.
<h3>What is the area of the rectangle?</h3>
The area of the rectangle is the product of the length and width of a given rectangle.
The area of the rectangle = length × Width
We know that the picture is 4 inches wide and 6 inches long.
Since there is a uniform border of x inches around the picture, so we must add 2x inches to each dimension.
The area will be = (4+2x)(6+2x) = 55.25
Therefore, the width of the frame is 4+2x, and the length of the frame is 6+2x.
Learn more about the area;
brainly.com/question/1658516
#SPJ1
Answer:
-$1.33 or lose $1.33
Step-by-step explanation:
In this game, there are two possible outcomes.
- There is a 2 in 6 chance (rolling a 5 or a 6) that you win $8.
- There is a 4 in 6 chance (rolling a 1, 2, 3 or a 4) that you win nothing.
Note that for any outcome, you start off paying $4 to play.
The expected value of this game is:

You are expected to lose $1.33 per play.