Answer:
$25,740
Step-by-step explanation:
First, converting R percent to r a decimal
r = R/100 = 5%/100 = 0.05 per year,
then, solving our equation
I = 23400 × 0.05 × 2 = 2340
I = $ 2,340.00
The simple interest accumulated
on a principal of $ 23,400.00
at a rate of 5% per year
for 2 years is $ 2,340.00.
The answer is C hope this helped
Answer:
Cardiac output:
Step-by-step explanation:
Given : The dye dilution method is used to measure cardiac output with 3 mg of dye.
To Find : Find the cardiac output.
Solution:
Formula of cardiac output:
---1
A = 3 mg

Do, integration by parts
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[20t\int{e^{-0.6t} \,dt}-\int[\frac{d[20t]}{dt}\int {e^{-0.6t} \, dt]dt]^{10}_0](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B20t%5Cint%7Be%5E%7B-0.6t%7D%20%5C%2Cdt%7D-%5Cint%5B%5Cfrac%7Bd%5B20t%5D%7D%7Bdt%7D%5Cint%20%7Be%5E%7B-0.6t%7D%20%5C%2C%20dt%5Ddt%5D%5E%7B10%7D_0)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20}{0.6}\int {e^{-0.6t} \,dt]^{10}_0](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-20te%5E%7B-0.6t%7D%7D%7B0.6%7D%2B%5Cfrac%7B20%7D%7B0.6%7D%5Cint%20%7Be%5E%7B-0.6t%7D%20%5C%2Cdt%5D%5E%7B10%7D_0)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20e^{-0.6t}}{(0.6)^2}]^{10}_{0}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-20te%5E%7B-0.6t%7D%7D%7B0.6%7D%2B%5Cfrac%7B20e%5E%7B-0.6t%7D%7D%7B%280.6%29%5E2%7D%5D%5E%7B10%7D_%7B0%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-200e^{-6}}{0.6}+\frac{20e^{-6}}{(0.6)^2}]+\frac{20}{(0.60^2}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-200e%5E%7B-6%7D%7D%7B0.6%7D%2B%5Cfrac%7B20e%5E%7B-6%7D%7D%7B%280.6%29%5E2%7D%5D%2B%5Cfrac%7B20%7D%7B%280.60%5E2%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=\frac{20(1-e^{-6}}{(0.6)^2}-\frac{200e^{-6}}{0.6}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5Cfrac%7B20%281-e%5E%7B-6%7D%7D%7B%280.6%29%5E2%7D-%5Cfrac%7B200e%5E%7B-6%7D%7D%7B0.6%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0\sim {54.49}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%5Csim%20%7B54.49%7D)
Substitute the value in 1
Cardiac output:
Cardiac output:
Hence Cardiac output:
5)
a. The equation that describes the forces which act in the x-direction:
<span> Fx = 200 * cos 30 </span>
<span>
b. The equation which describes the forces which act in the y-direction: </span>
<span> Fy = 200 * sin 30 </span>
<span>c. The x and y components of the force of tension: </span>
<span> Tx = Fx = 200 * cos 30 </span>
<span> Ty = Fy = 200 * sin 30 </span>
d.<span>Since desk does not budge, </span><span>frictional force = Fx
= 200 * cos 30 </span>
<span> Normal force </span><span>= 50 * g - Fy
= 50 g - 200 * sin 30
</span>____________________________________________________________
6)<span> Let F_net = 0</span>
a. The equation that describes the forces which act in the x-direction:
(200N)cos(30) - F_s = 0
b. The equation that describes the forces which act in the y-direction:
F_N - (200N)sin(30) - mg = 0
c. The values of friction and normal forces will be:
Friction force= (200N)cos(30),
The Normal force is not 490N in either case...
Case 1 (pulling up)
F_N = mg - (200N)sin(30) = 50g - 100N = 390N
Case 2 (pushing down)
F_N = mg + (200N)sin(30) = 50g + 100N = 590N