19.69 million barrels per day.
Electrons man. I think. Nah, I pretty sure....
Answer:
d. furcula
Explanation:
Furcula
Furcula is a synapomorphy linking dinosaurs and birds .
The furcula is the structure formed by midline fusion of clavicles and this very element is unique in the theropods as well . And is the most crucial for understanding the link between birds and the theropods .
The first suggestion was by Huxley in 1868 , and in 1870 , the key component of the debate is the presence of Frucula .
For staining flagella of bacteria use actively motile organisms 20 to 24 hours old, allow to diffuse in sterile water 20 to 30 minutes, transfer droplets of the suspension to clean slides and let evaporate without spreading. Then treat 2 to 4 minutes with the following mordant: tannic acid 10 or 20%, 50 cc.; ferric chloride 5%, 10 to 15 cc.; carbol fuchsin (Ziehl-Nielson), 5 cc.; hydrogen peroxide 3%, 6 to 8 cc. Wash and stain 2 to 3 minutes with a mixture of basic fuchsin, saturated alcoholic, 10 cc.; anilin oil (1 part) and 95% alcohol (3 parts) mixed, 5 cc.; distilled water, 30 cc.; acetic acid, 4%, 1 cc. Wash thoroly with water.
Answer:
The correct answer is - altered primary and quaternary structure; secondary and tertiary structure may or may not be altered.
Explanation:
a) Primary structure: It is fundamentally the amino acid sequence or arrangments. Every protein has a remarkable amino acid sequence and little change in these sequence modifies the primary structure. On account of sickle cell, the amino corrosive has changed, and henceforth the essential structure of the protein molecule changes.
b). secondary structure: It is the folding of the primary structure chain, which results from intermolecular and intramolecular hydrogen holding of the amide group. Ex; Alpha helix and beta sheets. In the above case, this may or might not have changed as there is no conclusive method to know this.
c) Tertiary structure: Most proteins' tertiary structures are mixes of a-helices, b sheets, and circles and turns. Every protein has interesting three-dimensional structure, folded in a particular way now and then known as a domain. For our situation, since it depends on the optional structure, it might have changed.
d) Quaternary structure: It is the relationship of numerous individual protein chains into a solitary protein with various subunits. The subunits arrangment offers to ascend to a steady structure. For our situation, a hemoglobin tetramers partner with one another and gather into large fibers. This has changed the first structure and accordingly we state the quaternary structure has changed.