<span>35 grams
The average salinity of seawater is 35 parts per thousand, so multiply the mass of seawater provided by 0.035 and you'll get the amount of salt (mostly sodium chloride) dissolved in it. So
1000 g * 0.035 = 35 g
Therefore in 1 kilogram of seawater with average salinity, there is 35 grams of salt.</span>
A) the independent variable is the variable that doesn’t rely on another variable. For this question the independent would be the days.
b) the dependent variable is the number of bacteria
c) ‘Number of bacteria across a number of days’
Our reaction balanced equation at equilibrium N2(g) + 3 H2(g) ↔ 2 NH3(g)
and we have the Kp value at equilibrium = 4.51 X 10^-5
A) 98 atm NH3, 45 atm N2, 55 atm H2
when Kp = [P(NH3)]^2 / [P(N2)] * [P(H2)]^3
= 98^2 / (45 * 55^3) = 1.28 x 10^-3
by comparing the Kp by the Kp at equilibrium(the given value) So,
Kp > Kp equ So the mixture is not equilibrium,
it will shift leftward (to decrease its value) towards the reactants to achieve equilibrium.
B) 57 atm NH3, 143 atm N2, no H2
∴ Kp = [P(NH3)]^2 / [P(N2)]
= 57^2 / 143 = 22.7
∴Kp> Kp equ (the given value)
∴it will shift leftward (to decrease its value) towards reactants to achieve equilibrium.
c) 13 atm NH3, 27 atm N2, 82 atm H2
∴Kp = [P(NH3)]^2 / [P(N2)] * [P(H2)]^3
= 13^2 / (27* 82^3) = 1.14 X 10^-5
∴ Kp< Kp equ (the given value)
∴it will shift rightward (to increase its value) towards porducts to achieve equilibrium.
<u>Answer:</u> The concentration of solute is 0.503 mol/L
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

where,
= osmotic pressure of the solution = 24 atm
i = Van't hoff factor = 2 (for NaCl)
c = concentration of solute = ?
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the concentration of solute is 0.503 mol/L
The Erlenmeyer Flask was <span>introduced in 1861 by German chemist </span>Emil Erlenmeyer and is shaped like a cone. This has a triangular shape and mouth wide for it to be easier to pour and store liquids. The Volumetric flask<span> is used for preparing liquids with volumes of high precision. It has a </span>pear-shaped body and a long neck with a circumferential fill line. The Filter Flask is also known as the <span>A Büchner </span><span>flask. It is like the Erlenmeyer but this one is thick-walled and has a special arm in the side. It is used for filtering liquid. </span>