1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
13

Is -40 the solution to -12=

rac{u}{8}" align="absmiddle" class="latex-formula">-7?
Mathematics
1 answer:
valentinak56 [21]3 years ago
4 0
Answer: Yes -40 is the answer

Explanation:

-12 = u/8 - 7
8(-12)/8 = u/8 - 8(7)/8
-96/8 = u/8 - 56/8
-96 = u - 56
-u = -56 + 96
-u = 40
u = -40
You might be interested in
What is the arc length of arc CD in the circle below?
lord [1]
The length of the arc intercepted by a central angle is the ratio of the angle to 360 degrees times the circumference. From the given values above,
                            S = (30° / 360°) x 2 x π x (6 ft)
                                 S = π
The angle intercepted an arc which measures π feet. The answer is letter A. 
4 0
2 years ago
Read 2 more answers
I need to know how to prove if an angle is congruent or not.
mash [69]
Prove it by explain how the shapes are interacted or not
8 0
3 years ago
A circle of yellow tulips is planted in Cedarburg's central park. Pam measured the circle and calculated that is has a circumfer
lozanna [386]

Answer:

The circle's diameter is 4\ yd

Step-by-step explanation:

we know that

The circumference of a circle is equal to

C=\pi D

where

D is the diameter of the circle

In this problem we have

C=12.56\ yd

\pi=3.14

substitute the values and solve for D

12.56=(3.14)D

D=12.56/(3.14)=4\ yd

6 0
3 years ago
The following list shows how many brothers and sisters some students have: 3, 2, 3, 2, 1, 2, 1, 3, 4, 5, 4, 3, 1, 2 State the mo
Wewaii [24]

Answer:

2 and 3

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Pauline withdrew $7.50 from her savings account every day for 3 days. Which expression is the best choice to help her determine
    9·1 answer
  • If john can cover 360 miles in 3 hours find the number of feet per minute john can cover
    15·1 answer
  • What is the coefficient of the term 6/7xy <br><br><br><br> Plz help
    8·2 answers
  • Suppose the volume of a cylinder is 169.65 ft cubes and the height is twice the radius what is the radius of the cylinder.
    10·1 answer
  • For every 10 cans John collected for recycling, he earned 9 cents. After he collects 80 cans, how much money would he have earne
    8·1 answer
  • Can someone explain how to get the right answer thx
    14·1 answer
  • Y is inversely proportional to x, when Y = 2, x = 4.
    10·1 answer
  • 55 points.<br>Please simplify it .<br>Don't answer of your don't know.<br>​
    15·2 answers
  • The owner of the theater where the ticket price for an adult is $10 and the ticket price for a child is $7 wants to make at leas
    15·2 answers
  • What is the probability of rolling a 5 on a six sided number cube
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!