The data convincingly show that wave frequency does not affect wave speed. An increase in wave frequency caused a decrease in wavelength while the wave speed remained constant. The last three trials involved the same procedure with a different rope tension.
Answer:
Approximately
.
Explanation:
Since the result needs to be accurate to three significant figures, keep at least four significant figures in the calculations.
Look up the Rydberg constant for hydrogen:
.
Look up the speed of light in vacuum:
.
Look up Planck's constant:
.
Apply the Rydberg formula to find the wavelength
(in vacuum) of the photon in question:
.
The frequency of that photon would be:
.
Combine this expression with the Rydberg formula to find the frequency of this photon:
.
Apply the Einstein-Planck equation to find the energy of this photon:
.
(Rounded to three significant figures.)
D. Weathering
The six steps of the rock cycle includes Weathering and Erosion, Transportation, Deposition, Compaction and Cementation. Metamorphism, Rock Melting.
Deposition is the process where rock particles sink at the rivers and become sediment.
Weathering is the process by which wind and water breaks down igneous, sedimentary, and metamorphic rocks. The process refers to large rocks broken down into smaller pieces and the broken off particles stay in the area.
Complete question:
Consider the hypothetical reaction 4A + 2B → C + 3D
Over an interval of 4.0 s the average rate of change of the concentration of B was measured to be -0.0760 M/s. What is the final concentration of A at the end of this same interval if its concentration was initially 1.600 M?
Answer:
the final concentration of A is 0.992 M.
Explanation:
Given;
time of reaction, t = 4.0 s
rate of change of the concentration of B = -0.0760 M/s
initial concentration of A = 1.600 M
⇒Determine the rate of change of the concentration of A.
From the given reaction: 4A + 2B → C + 3D
2 moles of B ---------------> 4 moles of A
-0.0760 M/s of B -----------> x

⇒Determine the change in concentration of A after 4s;
ΔA = -0.152 M/s x 4s
ΔA = -0.608 M
⇒ Determine the final concentration of A after 4s
A = A₀ + ΔA
A = 1.6 M + (-0.608 M)
A = 1.6 M - 0.608 M
A = 0.992 M
Therefore, the final concentration of A is 0.992 M.
1) in the opposite direction always
2) drag force is the force that acts in the opposite direction of the applied force (air resistance if a drag force for example)
3) frictions forces between the sole and the ground as the owner walks
4) chalk would glide very easily, so a creaking sound could never be produced, but also one could not write anything on the board!
5) I apologize for my lack of familiarity with the kind of sport but the probable answer is to raise the friction of their hands in order to decrease slipping and get a tighter, more firm grip