Answer:
Explanation:
energy emitted by source per second = .5 J
Eg = 1.43 eV .
Energy converted into radiation = .5 x .12 = .06 J
energy of one photon = 1.43 eV
= 1.43 x 1.6 x 10⁻¹⁹ J
= 2.288 x 10⁻¹⁹ J .
no of photons generated = .06 / 2.288 x 10⁻¹⁹
= 2.6223 x 10¹⁷
wavelength of photon λ = 1275 / 1.43 nm
= 891.6 nm .
momentum of photon = h / λ ; h is plank's constant
= 6.6 x 10⁻³⁴ / 891.6 x 10⁻⁹
= .0074 x 10⁻²⁵ J.s
Total momentum of all the photons generated
= .0074 x 10⁻²⁵ x 2.6223 x 10¹⁷
= .0194 x 10⁻⁸ Js
b ) spectral width in terms of wavelength = 30 nm
frequency width = ?
n = c / λ , n is frequency , c is velocity of light and λ is wavelength
differentiating both sides
dn = c x dλ / λ²
given dλ = 30 nm
λ = 891.6 nm
dn = 3 x 10⁸ x 30 x 10⁻⁹ / ( 891.6 x 10⁻⁹ )²
= 11.3 x 10¹² Hz .
c )
10 nW = 10 x 10⁻⁹ W
= 10⁻⁸ W .
energy of 50 dB
50 dB = 5 B
I / I₀ = 10⁵ ; decibel scale is logarithmic , I is energy of sound having dB = 50 and I₀ = 10⁻¹² W /s
I = I₀ x 10⁵
= 10⁻¹² x 10⁵
= 10⁻⁷ W
= 10 x 10⁻⁸ W
power required
= 10⁻⁸ + 10 x 10⁻⁸ W
= 11 x 10⁻⁸ W.
Answer:
The false statement is 'Electric field lines form closed loops'.
Explanation:
- Electric field lines originate from positive end and terminates at negative end,i.e., field lines are inward in direction to the negative charges and outward from the positive charges.
- These lines when close together represents high intensity and when far apart shows low intensity of the field.
- These lines do not intersect, as the tangent drawn on these lines provides us with the field direction and intersection of these lines means two field directions which is not possible.
- These lines unlike magnetic field lines do not form closed loops as they do not turn around but originate at positive end and terminates at negative end which ensures no loop formation.
Answer:
Orbital period, T = 1.00074 years
Explanation:
It is given that,
Orbital radius of a solar system planet, 
The orbital period of the planet can be calculated using third law of Kepler's. It is as follows :

M is the mass of the sun

T = 31559467.6761 s
T = 1.00074 years
So, a solar-system planet that has an orbital radius of 4 AU would have an orbital period of about 1.00074 years.
Answer:
the answer is B, stability
Explanation:
A traditional economy is a system that is based on honorable customs, history, and beliefs. Tradition guides economic decisions, such as production and distribution. Traditional economies depend on agriculture, fishing, hunting, gathering or some combination above. They use exchange instead of money. Most traditional economies operate in emerging markets and developing countries. They are often in Africa, Asia, Latin America and the Middle East. But you can find scholarships from traditional economies scattered all over the world. Economists and anthropologists believe that all other economies started out as traditional economies. Thus, they expect the remaining traditional economies to evolve into market, command or mixed economies over time.