A 15.75-g<span> piece of iron absorbs 1086.75 </span>joules<span> of </span>heat<span> energy, and its ... </span>How many joules<span> of </span>heat<span> are </span>needed<span> to raise the temperature of 10.0 </span>g<span> of </span>aluminum<span> from 22°C to 55°C, if the specific </span>heat<span> of </span>aluminum<span> is o.90 J/</span>g<span>”C2 .</span>
Answer:
Explanation:
1) Force Friction = Normal Force * Coefficient of Friction
Force Friction = Mass * Gravity * Coefficient of Friction
2) F = ma
Force = mass * acceleration
Force Friction (from #1) = mass * acceleration
acceleration = Force Friction / Mass
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee5454
Explanation:
There's not enough information in the problem to solve it. We need to know either the initial speed of the lorry, or the time it takes to stop.
For example, if we assume the initial speed of the lorry is 25 m/s, then we can find the rate of deceleration:
v² = v₀² + 2aΔx
(0 m/s)² = (25 m/s)² + 2a (50 m)
a = -6.25 m/s²
We can then use Newton's second law to find the force:
F = ma
F = (7520 kg) (-6.25 m/s²)
F = -47000 N