1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frosja888 [35]
3 years ago
15

Help me please anyone!

Mathematics
2 answers:
olasank [31]3 years ago
6 0

Answer:

1) 13(2) + 2m = A

2) 70

Step-by-step explanation:

Vika [28.1K]3 years ago
6 0

The answer in the there:

You might be interested in
~~~15 POINTS~~~
REY [17]
Let's call bicycles 'b' and unicycles 'u'
Note that bicycles have 2 tires, and unicycles have 1 tire.

We can make two equations:

b = u + 8
2b + 1u = 46

Solving the first equation for u, we get:

u = b - 8

Plug that equation into the second, and we get:

2b + (b - 8) = 46

Subtract 2b on both sides.

1(b - 8) = 46 - 2b

Basically, I used b and your question used n.

The correct answer is: D. 1(n - 8) = 46 - 2n.
7 0
3 years ago
Kailee had $94. She paid $32 for her guitar lessons. Then she earned $14 raking leaves. How much money does Kailee have now?
Monica [59]
$94 - $32= $62 + $14= $76. :)
7 0
3 years ago
Read 2 more answers
Better Products, Inc., manufactures three products on two machines. In a typical week, 40 hours are available on each machine. T
Kaylis [27]

Answer:

z (max)  =  1250 $

x₁  = 25    x₂  =  0   x₃  =  25

Step-by-step explanation:

                                Profit $    mach. 1      mach. 2

Product 1     ( x₁ )       30             0.5              1

Product 2    ( x₂ )       50             2                  1

Product 3    ( x₃ )       20             0.75             0.5

Machinne 1 require  2 operators

Machine   2 require  1  operator

Amaximum of  100 hours of labor available

Then Objective Function:

z  =  30*x₁  +  50*x₂  +  20*x₃      to maximize

Constraints:

1.-Machine 1 hours available  40

In machine 1    L-H  we will need

0.5*x₁  +  2*x₂  + 0.75*x₃  ≤  40

2.-Machine 2   hours available  40

1*x₁  +  1*x₂   + 0.5*x₃   ≤  40

3.-Labor-hours available   100

Machine 1     2*( 0.5*x₁ +  2*x₂  +  0.75*x₃ )

Machine  2       x₁   +   x₂   +  0.5*x₃  

Total labor-hours   :  

2*x₁  +  5*x₂  +  2*x₃  ≤  100

4.- Production requirement:

x₁  ≤  0.5 *( x₁ +  x₂  +  x₃ )     or   0.5*x₁  -  0.5*x₂  -  0.5*x₃  ≤ 0

5.-Production requirement:

x₃  ≥  0,2 * ( x₁  +  x₂   +  x₃ )  or    -0.2*x₁  - 0.2*x₂ + 0.8*x₃   ≥  0

General constraints:

x₁  ≥   0       x₂    ≥   0       x₃     ≥   0           all integers

The model is:

z  =  30*x₁  +  50*x₂  +  20*x₃      to maximize

Subject to:

0.5*x₁  +  2*x₂  + 0.75*x₃  ≤  40

1*x₁  +  1*x₂   + 0.5*x₃       ≤  40

2*x₁  +  5*x₂  +  2*x₃        ≤  100

0.5*x₁  -  0.5*x₂  -  0.5*x₃  ≤ 0

-0.2*x₁  - 0.2*x₂ + 0.8*x₃   ≥  0

x₁  ≥   0       x₂    ≥   0       x₃     ≥   0           all integers

After 6 iterations with the help of the on-line solver AtomZmaths we find

z (max)  =  1250 $

x₁  = 25    x₂  =  0   x₃  =  25

6 0
3 years ago
Given that f(x) = 2x −5, find the value of x that makes f(x) = 15.
svp [43]
F(x)  = 2 x - 5

15 = 2 x - 5

2 x - 5 = 15

2 x = 15 + 5

2 x = 20

x = 20 / 2

x = 10

hope this helps!
8 0
3 years ago
Read 2 more answers
HELPP I WILL GIVE BRAINLEIST!! PLSSSSS PLSSSSSSS
musickatia [10]

Answer:

x = 3  &&  y = - 1

Step-by-step explanation:

Just solving the two equations

the first equation

y = 4/3 x +3

y  - 4/3 x = 3  ..............................................(1)

the second equation

y = -2/3x -3

y + 2/3 x = -3  ..............................................(2)

by substracting 2 from 1

-4/3x - 2/3x = -6

divide by -1

4/3x +2/3x = 6

6/3x = 6

2x = 6

x= 3

then subsititute by value x in any of given eqautions  

8 0
3 years ago
Other questions:
  • What is the volume of the composite figure shown? (Use 3.14 for π.)
    5·1 answer
  • Can someone please help me
    14·1 answer
  • 34 over w = 40 over 100
    12·1 answer
  • What is number 2, 3 and 4
    7·1 answer
  • X^2-5x=-4 . I need to find the zeroes
    7·1 answer
  • (7,-4);
    11·1 answer
  • Evaluate the expression below. a = -8, b = - 4.1, and c = 9.
    13·1 answer
  • What should be done to both sides of the equation in order to solve y + 8.5 = 17.2?
    9·2 answers
  • Can someone please help me with both questions I’ll Mark brainlist !
    12·1 answer
  • Find the value. please help!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!