I am sure the answer is D
Answer:
Percentage of copper = 88%
Explanation:
Given data:
Mass of copper = 51.2 g
Mass of tin = 6.84 g
Percentage of copper = ?
Solution:
Formula:
Percentage of copper = mass of copper / total mass × 100
Now we will determine the total mass:
Total mass = mass of copper + mass of tin
Total mass = 51.2 g + 6.84 g
Total mass = 58.04 g
Now we will calculate the percentage of copper.
Percentage of copper = 51.2 g / 58.04 g × 100
Percentage of copper = 0.88 × 100
Percentage of copper = 88%
The correct answer is approximately 11.73 grams of sulfuric acid.
The theoretical yield of water from Al(OH)3 is lower than that of H₂SO₄. As a consequence, Al(OH)3 is the limiting reactant, H₂SO₄ is in excess.
The balanced equation is:
2Al(OH)₃ + 3H₂SO₄ ⇒ Al₂(SO₄)₃ + 6H₂O
Each mole of Al(OH)3 corresponds to 3/2 moles of H₂SO₄. The molecular mass of Al(OH)3 is 78.003 g/mol. There are 15/78.003 = 0.19230 moles of Al(OH)3 in the five grams of Al(OH)3 available. Al(OH)3 is in limiting, which means that all 0.19230 moles will be consumed. Accordingly, 0.19230 × 3/2 = 0.28845 moles of H₂SO₄ will be consumed.
The molar mass of H₂SO₄ is 98.706 g/mol. The mass of 0.28845 moles of H₂SO₄ is 0.28845 × 98.706 = 28.289 g
40 grams of sulfuric acid is available, out of which 28.289 grams is consumed. The remaining 40-28.289 = 11.711 g is in excess, which is closest to the first option, that is, 11.73 grams of H₂SO₄.
Answer:
formula units of sodium chloride can be formed from 13.0 gram of ferric chloride.
Explanation:
Mass of ferric chloride = 13.0 g
Moles of ferric chloride = 
1 mole of ferric chloride has three moles of chloride ions.Then 0.08 moles of ferric chloride will have :
of chloride

1 mole of sodium ion reacts with 1 mole of chloride ion to form 1 mole of NaCl. Then 0.24 moles of chloride ion will give:
of NaCl
1 mole =
molecules/ atoms
Number of NaCl molecules in 0.24 moles :

formula units of sodium chloride can be formed from 13.0 gram of ferric chloride.
B. Are produced only by living things