A small 20-kg canoe is floating downriver at a speed of 2 m/s. 40 J is the canoe’s kinetic energy.
Answer: Option A
<u>Explanation:</u>
The given canoe has the mass and is being given to move at a speed. Therefore the kinetic energy of the canoe can be calculated using the following method,
Given that mass of the canoe = 20 kg and its speed =1 m/s
As we know that the Kinetic energy has the formula,

Therefore, substituting the value into the equation, we get,
= 40 J
Step 2: Use the slope to find<span> the y-intercept. </span>Line<span> is </span>parallel<span> so use m = 2/5. </span>6<span>. </span>Find<span>the </span>equation<span> of a </span>line passing through the point<span> (8, –</span>9<span>) perpendicular to the </span>line<span> 3x + 8y = 4.</span>
Answer:
F=5449 N
Explanation:
Work done is a product of force and displacement ie
Work done, W, = Force*Displacement
Power, P, is Work done/Time
where P is power, W is work done, F is force, S is displacement and t is time
In this case, F is the frictional force. Converting the power from hp to W, we multiply by 746 hence P=746*168=125328 W
Since displacement/time is velocity, then
P=FV where V is velocity in m/s
Making F the subject


F=5449 N
Answer:
b. They orbit around the Sun in a counterclockwise direction, when viewed from above the ecliptic plane.
Explanation:
All the objects of the solar system revolve around the Sun in a counterclockwise direction. The comet coming from the Oort's cloud will also follow the same kind of orbit. That is why it can't be a property to distinguish an Oort's cloud comet.
All other properties are correct to identify an Oort's cloud comet as the Oort's cloud is a considered a spherical cloud just outside the Solar system.