<u>The following statements are false about collisions:
</u>
- The velocity change of two respective objects involved in a collision will always be equal.
- Total momentum is always conserved between any two objects involved in a collision.
Answer: Option B, and D
<u>Explanation:
</u>
In any collisions, equal amount of net force will be acted upon the colliding objects due to the third law of Newton, irrespective of the significance difference in mass of the objects. Similarly, they can also have different acceleration values during collision of two objects if the masses are identical.
But the statements regarding the equal change in velocity of two objects respectively involved in collision always is false, as the conservation of momentum is applicable for isolated system only. So it is true for only isolated system and not in all the systems.
The same reason goes for falsifying the fourth statement which states that total momentum is always conserved between two objects involved in a collision as this statement is only true for isolated system where the conservation of momentum can be applied. Thus the second and fourth statement is false regarding collision.
Answer:
true
Explanation:
The law of conservation of mass states that in a chemical reaction mass is neither created nor destroyed. For example, the carbon atom in coal becomes carbon dioxide when it is burned. The carbon atom changes from a solid structure to a gas but its mass does not change.
Answer:
See Explanation
Explanation:
The question is incomplete, as there are no diagrams or options to provide more information to the question.
The general explanation is as follows:
For the object not to move
(1): The forces acting on the object must opposite each other. i.e. if force A acts at the right (or positive direction), force B will act at the left (or negative direction).
(2) The two forces must be equal.
So, for instance:
If the pair of forces are 5N and 5N in opposite directions, the object wil not move.
However, if one of the forces is greater, the object will move towards the direction of the greater force.