1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vesna_86 [32]
4 years ago
13

If an object has a mass of 10 kilograms, how much does it weigh in newtons?

Physics
1 answer:
schepotkina [342]4 years ago
6 0

10 kilograms of mass weighs 98.1 newtons on Earth,
16.2 newtons on the Moon, 37.1 newtons on Mars,
and other weights in other places.

You might be interested in
17.Explain the different ways that an object can become electrically charged.
Debora [2.8K]

17.

There are three different methods for charging objects:

- Friction: in friction, two objects are rubbed against each other. As a result, electrons can be passed from one object to the other, so one object will gain a net negative charge while the other object will gain a net positive charge due to the lack of electrons.

- Conduction: this occurs when two conductive objects are put in contact with each other, and charges (electrons, usually) are transferred from one object to the other one.

- Induction: this occurs when two objects are brought closer to each other, but not in contact. If one of the two objects has a net charge (different from zero) on its surface, then it will induce a movement of charges in the second object: in particular, in the second object, charges of the opposite polarity will be attracted towards the first object, while charges of same polarity will be repelled further away.

18.

Charged objects produce around themselves an electric field. The strenght of the electric field is given by (assuming the charged objects are spherical)

E=k\frac{q}{r^2}

where k is the Coulomb's constant, q is the magnitude of the charge and r the distance from the centre of the charge. As we see, the strength of the field is inversely proportional to the square of the distance.

Also, the direction of the field is determined by the sign of the charge:

- if the charge is positive, the electric field points away from the charge (this means that other positive charges in the field will be repelled away)

- if the charge is negative, the electric field points towards the charge (this means that other positive charges in the field will be attracted towards it)

19.

Electrical force is given by:

F=k\frac{q_1 q_2}{r^2}

where k is the Coulomb's constant, q1 and q2 are the two charges, and r their separation.

Gravitational force is given by:

F=G\frac{m_1 m_2}{r^2}

where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r their separation.

Similarities between the two forces:

- Both are inversely proportional to the square of the distance between the two objects, r

- Both are non-contact forces (the two objects can experience the forces even if they are not in contact)

- Both forces have infinite range

Differencies between the two forces:

- The electric force can be either attractive or repulsive, while the gravitational force is attractive only

- The electric force is much stronger than the gravitational force, due to the much larger value of the Coulomb's constant k compared to the gravitational constant G

4 0
4 years ago
Why doesn’t she love me
o-na [289]
I bet she does just give her tule work on yourself
7 0
3 years ago
Read 2 more answers
The speed of a moving bullet can be deter-
Bad White [126]

Answer:

<em>v = 381 m/s</em>

Explanation:

<u>Linear Speed</u>

The linear speed of the bullet is calculated by the formula:

\displaystyle v=\frac{x}{t}

Where:

x = Distance traveled

t = Time needed to travel x

We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.

The formula for the angular speed of a rotating object is:

\displaystyle \omega=\frac{\theta}{t}

Where θ is the angular displacement and t is the time. Solving for t:

\displaystyle t=\frac{\theta}{\omega}

The angular displacement is θ=14°. Converting to radians:

\theta=14*\pi/180=0.2443\ rad

The angular speed is w=1436 rev/min. Converting to rad/s:

\omega = 1436*2\pi/60=150.3776\ rad/s

Thus the time is:

\displaystyle t=\frac{0.2443\ rad}{150.3776\ rad/s}

t = 0.0016 s

Thus the speed of the bullet is:

\displaystyle v=\frac{0.61}{0.0016}

v = 381 m/s

7 0
3 years ago
A rock of mass 200 g is attached to a 0.75 m long string and swung in a vertical plane.
Ainat [17]

Hello!

a) Assuming this is asking for the minimum speed for the rock to make the full circle, we must find the minimum speed necessary for the rock to continue moving in a circular path when it's at the top of the circle.

At the top of the circle, we have:

- Force of gravity (downward)

*Although the rock is still connected to the string, if the rock is swinging at the minimum speed required, there will be no tension in the string.

Therefore, only the force of gravity produces the net centripetal force:

\Sigma F = F_g\\\\F_c = F_g\\\\\frac{mv^2}{r} = mg

We can simplify and rearrange the equation to solve for 'v'.

\frac{v^2}{r} = g\\\\v^2 = gr\\\\v = \sqrt{gr}

Plugging in values:

v = \sqrt{9.8 * 0.75} = \boxed{2.711 m/s^}

b)
Let's do a summation of forces at the bottom of the swing. We have:
- Force due to gravity (downward, -)

- Tension force (upward, +)

The sum of these forces produces a centripetal force, upward (+).

\Sigma F = T - F_g\\\\F_c = T - F_g\\\\\frac{mv^2}{r} = T - mg

Rearranging for 'T":
T =   \frac{mv^2}{r} +  mg\\\\

Plugging in the appropriate values:
T =  \frac{(0.2)(2.711^2)}{(0.75)} + 0.2(9.8) = \boxed{3.92 N}

5 0
2 years ago
Read 2 more answers
A refrigerator is 1.8m tall, lm wide,and 0.8m deep.The center of mass is lm from the bottom, 0.5m from the side, and 0.6m from t
VikaD [51]

Answer:

  F = 520 N

Explanation:

For this exercise the rotational equilibrium equation should be used

          Σ τ = 0

Let's set a reference system with the origin at the back of the refrigerator and the counterclockwise rotation as positive. On the x-axis it is horizontal directed outward, eg the horizontal y-axis directed to the side and the z-axis vertical

Torque is

             τ = F x r

the bold indicate vectors, we analyze each force

the applied force is horizontal along the -x axis, the arm (perpendicular distance) is directed in the z axis,

The weight of the body is the vertical direction of the z-axis, so the arm is on the x-axis

                 -F z + W x = 0

                 F z = W x

                 F =  \frac{x}{z}  W

             

The exercise indicates the point of application of the force z = 1.5 m and the weight is placed in the center of mass of the body x = 0.6 m, we are assuming that the force is applied in the wide center of the refrigerator

let's calculate

                 F = 1300 0.6 / 1.5

                 F = 520 N

5 0
3 years ago
Other questions:
  • How to change V=72km/hr to m/s
    9·1 answer
  • Calculate the force of friction that keeps an 80-kg person sitting on the edge of a horizontal rotating platform when the person
    11·1 answer
  • Find the change in internal energy, AU, if Q = 2.5 Joules and W = -30.5<br> Joules. *
    7·1 answer
  • HELP ASAP!! The voltage from a power supply to a light bulb is increased by 2 volts and the current is recorded. A graph of this
    12·1 answer
  • Pushing a door closed is an example of force. true or false​
    14·2 answers
  • When a light bulb is connected to a 4.5 V battery, a current of 0.16 A passes through the bulb filament. What is the resistance
    6·1 answer
  • Electricity questions
    8·1 answer
  • How much force is required to cause an object with a mass of 850 kg to accelerate at a rate of 2 meters per second squared (m/s^
    9·2 answers
  • HELP ME Please!!!!!!<br>Select ALL that apply
    13·1 answer
  • When summer changes to fall, what seasonal changes do plants experience? (IGNORE HIGHLIGHTED ANSWER)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!