Answer:
1+7+8+8
Step-by-step explanation:
Answer:
(x - 5)² = 41
Step-by-step explanation:
* Lets revise the completing square form
- the form x² ± bx + c is a completing square if it can be put in the form
(x ± h)² , where b = 2h and c = h²
# The completing square is x² ± bx + c = (x ± h)²
# Remember c must be positive because it is = h²
* Lets use this form to solve the problem
∵ x² - 10x = 16
- Lets equate 2h by -10
∵ 2h = -10 ⇒ divide both sides by 2
∴ h = -5
∴ h² = (-5)² = 25
∵ c = h²
∴ c = 25
- The completing square is x² - 10x + 25
∵ The equation is x² - 10x = 16
- We will add 25 and subtract 25 to the equation to make the
completing square without change the terms of the equation
∴ x² - 10x + 25 - 25 = 16
∴ (x² - 10x + 25) - 25 = 16 ⇒ add 25 to both sides
∴ (x² - 10x + 25) = 41
* Use the rule of the completing square above
- Let (x² - 10x + 25) = (x - 5)²
∴ (x - 5)² = 41
Answer:
19.5 = CD
Step-by-step explanation:
The square of the tangent = the the whole secant times the outside part of the secant.
EG²= (ED)(EC)
13² = (26)(EC)
169 = 26EC
169/26 = EC
6.5 + EC
Now ED = EC + CD
26 = 6.5 + CD
26 - 6.5 = CD
19.5 = CD
Answer:
First, plot points A & B on a graph.
Collinear just means 3 or more points in a straight line (because just 2 points are always collinear, since a straight line can always be drawn through two points.
The instructions don't state a specific area in which points C & D have to be in, so you can put them anywhere, as long as they are collinear with each other, but not any other points,
- i.e. putting three units up and two units left of points A & B
So let's make up some points for C & D that are on a straight line.
- Remember, this line does <em>not</em> have to be horizontal! As long as it's a straight line, any direction will do.
Here are some points that you can choose from:
- C(-1, 1); D(-1, -1)
- C(4, 5); D(4, -5)
- C(3, 4); D(3, 5)
- Anything that doesn't fall on x=2 or y=±3.
For "F" just pick a set of coordinates off to the side and label it
You can even use half values if you want:
- (0.5, 3.2)
- (1.2, -4.1)
- (-9.1, -0.2)
As long as your plotted points meet the criteria:
- C & D are <em>Collinear</em>
- A, B, C, D, & F must not land on the same straight line.