Answer:
the normal x is three and the red x is negative three
Step-by-step explanation:
Answer:
The relation is not a function
The domain is {1, 2, 3}
The range is {3, 4, 5}
Step-by-step explanation:
A relation of a set of ordered pairs x and y is a function if
- Every x has only one value of y
- x appears once in ordered pairs
<u><em>Examples:</em></u>
- The relation {(1, 2), (-2, 3), (4, 5)} is a function because every x has only one value of y (x = 1 has y = 2, x = -2 has y = 3, x = 4 has y = 5)
- The relation {(1, 2), (-2, 3), (1, 5)} is not a function because one x has two values of y (x = 1 has values of y = 2 and 5)
- The domain is the set of values of x
- The range is the set of values of y
Let us solve the question
∵ The relation = {(1, 3), (2, 3), (3, 4), (2, 5)}
∵ x = 1 has y = 3
∵ x = 2 has y = 3
∵ x = 3 has y = 4
∵ x = 2 has y = 5
→ One x appears twice in the ordered pairs
∵ x = 2 has y = 3 and 5
∴ The relation is not a function because one x has two values of y
∵ The domain is the set of values of x
∴ The domain = {1, 2, 3}
∵ The range is the set of values of y
∴ The range = {3, 4, 5}
Answer:
thxs
Step-by-step explanation:
Function 1:
f(x) = -x² + 8(x-15)f(x) = -x² <span>+ 8x - 120
Function 2:
</span>f(x) = -x² + 4x+1
Taking derivative will find the highest point of the parabola, since the slope of the parabola at its maximum is 0, and the derivative will allow us to find that.
Function 1 derivative: -2x + 8 ⇒ -2x + 8 = 0 ⇒ - 2x = -8 ⇒ x = -8/-2 = 4
Function 2 derivative: -2x+4 ⇒ -2x + 4 = 0 ⇒ -2x = -4 ⇒ x = -4/-2 ⇒ x= 2
Function 1: f(x) = -x² <span>+ 8x - 120 ; x = 4
f(4) = -4</span>² + 8(4) - 120 = 16 + 32 - 120 = -72
<span>
Function 2: </span>f(x) = -x²<span> + 4x+1 ; x = 2
</span>f(2) = -2² + 4(2) + 1 = 4 + 8 + 1 = 13
Function 2 has the larger maximum.
Answer:
scale is 4...... ........