The degree of a polynomial is the value of the highest exponent a variable is raised to (i.e., the degree of the equation
![y=x^{2}](https://tex.z-dn.net/?f=y%3Dx%5E%7B2%7D%20)
is 2, since the highest exponent of a variable is 2.
If we apply this concept to your list of polynomials, we see that polynomial A and polynomial D both have
![x^{5}](https://tex.z-dn.net/?f=x%5E%7B5%7D)
terms, so they are both fifth-degree polynomials. However, your answer must also be a trinomial (a polynomial with three terms.) If we look at polynomials A and D, we see that only polynomial A has three terms, so that must be the answer!
Let me know if you have any questions :)
Answer:
![a^{3y} + 1 = (a^{y}+1 )^{3} - 3a^y(a^{y}+1)\\\\](https://tex.z-dn.net/?f=a%5E%7B3y%7D%20%2B%201%20%20%3D%20%28a%5E%7By%7D%2B1%20%29%5E%7B3%7D%20%20-%203a%5Ey%28a%5E%7By%7D%2B1%29%5C%5C%5C%5C)
Step-by-step explanation:
We are to factorize the expression
completely. To do this, we will apply the expression below;
The expression can be rewritten as ![a^{3y} + 1^{3}](https://tex.z-dn.net/?f=a%5E%7B3y%7D%20%2B%201%5E%7B3%7D)
To factorize the expression, we need to first factorize
first
![(a^{y}+1 )^{3} =(a^{y}+1 )(a^{y}+1 )^{2}\\= (a^{y}+1 )((a^y)^{2} } + 2a^{y} +1)\\= (a^y)^{3} +2(a^y)^{2}+a^y+( a^y)^{2}+2a^y+1\\(a^{y}+1 )^{3} = ((a^y)^{3} + 1) +2(a^y)^{2}+a^y+( a^y)^{2}+2a^y\\(a^{y}+1 )^{3} = ((a^y)^{3} + 1) +3(a^y)^{2}+3a^y\\](https://tex.z-dn.net/?f=%28a%5E%7By%7D%2B1%20%29%5E%7B3%7D%20%3D%28a%5E%7By%7D%2B1%20%29%28a%5E%7By%7D%2B1%20%29%5E%7B2%7D%5C%5C%3D%20%28a%5E%7By%7D%2B1%20%29%28%28a%5Ey%29%5E%7B2%7D%20%20%7D%20%2B%202a%5E%7By%7D%20%2B1%29%5C%5C%3D%20%28a%5Ey%29%5E%7B3%7D%20%2B2%28a%5Ey%29%5E%7B2%7D%2Ba%5Ey%2B%28%20a%5Ey%29%5E%7B2%7D%2B2a%5Ey%2B1%5C%5C%28a%5E%7By%7D%2B1%20%29%5E%7B3%7D%20%20%3D%20%28%28a%5Ey%29%5E%7B3%7D%20%2B%201%29%20%2B2%28a%5Ey%29%5E%7B2%7D%2Ba%5Ey%2B%28%20a%5Ey%29%5E%7B2%7D%2B2a%5Ey%5C%5C%28a%5E%7By%7D%2B1%20%29%5E%7B3%7D%20%20%3D%20%28%28a%5Ey%29%5E%7B3%7D%20%2B%201%29%20%2B3%28a%5Ey%29%5E%7B2%7D%2B3a%5Ey%5C%5C)
The we will make
the subject of the formula as shown;
![(a^y)^{3} + 1 = (a^{y}+1 )^{3} - (3(a^y)^{2}+3a^y)\\(a^y)^{3} + 1^{3} = (a^{y}+1 )^{3} - (3(a^y)^{2}+3a^y)\\\\](https://tex.z-dn.net/?f=%28a%5Ey%29%5E%7B3%7D%20%2B%201%20%3D%20%28a%5E%7By%7D%2B1%20%29%5E%7B3%7D%20%20-%20%283%28a%5Ey%29%5E%7B2%7D%2B3a%5Ey%29%5C%5C%28a%5Ey%29%5E%7B3%7D%20%2B%201%5E%7B3%7D%20%20%3D%20%28a%5E%7By%7D%2B1%20%29%5E%7B3%7D%20%20-%20%283%28a%5Ey%29%5E%7B2%7D%2B3a%5Ey%29%5C%5C%5C%5C)
![(a^y)^{3} + 1 = (a^{y}+1 )^{3} - (3(a^y)^{2}+3a^y)\\\\](https://tex.z-dn.net/?f=%28a%5Ey%29%5E%7B3%7D%20%2B%201%20%20%3D%20%28a%5E%7By%7D%2B1%20%29%5E%7B3%7D%20%20-%20%283%28a%5Ey%29%5E%7B2%7D%2B3a%5Ey%29%5C%5C%5C%5C)
![a^{3y} + 1 = (a^{y}+1 )^{3} - (3(a^y)^{2}+3a^y)\\\\](https://tex.z-dn.net/?f=a%5E%7B3y%7D%20%2B%201%20%20%3D%20%28a%5E%7By%7D%2B1%20%29%5E%7B3%7D%20%20-%20%283%28a%5Ey%29%5E%7B2%7D%2B3a%5Ey%29%5C%5C%5C%5C)
![a^{3y} + 1 = (a^{y}+1 )^{3} - 3a^y(a^{y}+1)\\\\](https://tex.z-dn.net/?f=a%5E%7B3y%7D%20%2B%201%20%20%3D%20%28a%5E%7By%7D%2B1%20%29%5E%7B3%7D%20%20-%203a%5Ey%28a%5E%7By%7D%2B1%29%5C%5C%5C%5C)
This last result gives the expansion of the expression
Answer:
No does not contain the same length
Step-by-step explanation:
Given that
A(-4,2) , B (1,4), C (2, -1)
Now
AB would be
= ![\sqrt{(1-(-4))^2 + (4-2)^2} \\\\= \sqrt{29}](https://tex.z-dn.net/?f=%5Csqrt%7B%281-%28-4%29%29%5E2%20%2B%20%284-2%29%5E2%7D%20%5C%5C%5C%5C%3D%20%5Csqrt%7B29%7D)
And, BC is
![= \sqrt{(2-1)^2 + 1-(-4))^2} \\\\= \sqrt{26}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%7B%282-1%29%5E2%20%2B%201-%28-4%29%29%5E2%7D%20%5C%5C%5C%5C%3D%20%5Csqrt%7B26%7D)
As we can see that the AB and BC are not equaled
So,
AB ≠ BC
Due to the different length
Therefore they do not contains the same length
We simply applied the distance formula due to which the length could be determined and the same is to be considered
<span>1. Divide the top of the fraction by the bottom
<span>2. Then multiply the result by 100 and read off the answer!
</span></span>
1. The shop told the retailer 3.400
2. The children wrote 6.530 on their whiteboard