what is your clear question? it lacks some details
Number the tables as follows:
1 2
3 4
Eliminate 3 and 4 immediately, because for x = 2 the y values are wrong (3 and 1).
In tables 1 and 2, the input (1) produces the correct output (-1).
So we have to determine which table agrees 100% with the system of equations given.
Comparing tables 1 and 2, row by row, we see that their contents are the same EXCEPT for the first rows. So focus on determing which of those 2 rows displays values that satisfy both given equations.
First I looked at y=2x-5, and subst. -1 for x. I got -7, which is correct in table 1 but not in table 2 (where the value would be -13).
Thus, table 1 correct represents the solution of the system of equations.
Answer:
This is an percentage change question, by any chance you have a maths textbook, look for units that contains the topic: Percentage Change. Now, let's get solving! :)
Step-by-step explanation:
Firstly, you must multiply 4.5% with 56. That is: shipping fees x purchase price
That gives ($) 2.52 (this is your answer)
No addition/totaling needed as the question asked ONLY for the shipping fees.
Stay safe and Merry Christmas! :)
Y = (1 + x) / (1 + x^2)
y'
= [(1 + x^2)(1) - (1 + x)(2x)] / (1 + x^2)^2
= [1 + x^2 - 2x - 2x^2] / (1 + x^2)^2
= [-x^2 - 2x + 1] / (1 + x^2)^2
y''
= [(1 + x^2)^2 * (-2x - 2) - (-x^2 - 2x + 1)(2)(1 + x^2)(2x)] / (1 + x^2)^4
= [(1 + x^2)(-2x - 2) - (4x)(-x^2 - 2x + 1)] / (1 + x^2)^3
= [(-2x - 2x^3 - 2 - 2x^2) - (-4x^3 - 8x^2 + 4x)] / (1 + x^2)^3
= [-2x - 2x^3 - 2 - 2x^2 + 4x^3 + 8x^2 - 4x] / (1 + x^2)^3
= [2x^3 + 6x^2 - 6x - 2] / (1 + x^2)^3
Setting y'' to zero, we have:
y'' = 0
[2x^3 + 6x^2 - 6x - 2] / (1 + x^2)^3 = 0
(2x^3 + 6x^2 - 6x - 2) = 0
Using trial and error, you will realise that x = 1 is a root.
This means (x - 1) is a factor.
Dividing 2x^3 + 6x^2 - 6x - 2 by x - 1 using long division, you will have 2x^2 + 8x + 2.
2x^2 + 8x + 2
= 2(x^2 + 4x) + 2
= 2(x + 2)^2 - 2(2^2) + 2
= 2(x + 2)^2 - 8 + 2
= 2(x + 2)^2 - 6
Setting 2x^2 + 8x + 2 to zero, we have:
2(x + 2)^2 - 6 = 0
2(x + 2)^2 = 6
(x + 2)^2 = 3
x + 2 = sqrt(3) or = -sqrt(3)
x = -2 + sqrt(3) or x = -2 - sqrt(3)
Note that -2 - sqrt(3) < -2 + sqrt(3) < 1
We will choose random values belonging to each interval and test them out.
-5 < -2 - sqrt(3) < -2 < -2 + sqrt(3)
f''(-5) = [2(-5)^3 + 6(-5)^2 - 6(-5) - 2] / (1 + (-5)^2)^3 = -9/2197 < 0
f''(-2) = [2(-2)^3 + 6(-2)^2 - 6(-2) - 2] / (1 + (-2)^2)^3 = 18/125 > 0
Note that one value is positive and the other is negative.
Thus, x = -2 - sqrt(3) is an inflection point.
-2 - sqrt(3) < -2 < -2 + sqrt(3) < 0 < 1
f''(-2) = [2(-2)^3 + 6(-2)^2 - 6(-2) - 2] / (1 + (-2)^2)^3 = 18/125 > 0
f''(0) = [2(0)^3 + 6(0)^2 - 6(0) - 2] / (1 + (0)^2)^3 = -2 < 0
Note that one value is positive and the other is negative.
Thus, x = -2 + sqrt(3) is also an inflection point.
-2 + sqrt(3) < 0 < 1 < 2
f''(0) = [2(0)^3 + 6(0)^2 - 6(0) - 2] / (1 + (0)^2)^3 = -2 < 0
f''(2) = [2(2)^3 + 6(2)^2 - 6(2) - 2] / (1 + (2)^2)^3 = 26/125 > 0
Note that one value is positive and the other is negative.
Thus, x = 1 is an inflection point.
Hence, we have three inflection points in total.
When x = -2 - sqrt(3), we have:
y
= (1 - 2 - sqrt(3)) / (1 + (-2 - sqrt(3))^2)
= (-1 - sqrt(3)) / (1 + 4 + 4sqrt(3) + 3)
= (-1 - sqrt(3)) / (8 + 4sqrt(3))
When x = -2 + sqrt(3), we have:
y
= (1 - 2 + sqrt(3)) / (1 + (-2 + sqrt(3))^2)
= (-1 + sqrt(3)) / (1 + 4 - 4sqrt(3) + 3)
= (-1 + sqrt(3)) / (8 - 4sqrt(3))
When x = 1, we have:
y
= (1 + 1) / (1 + 1^2)
= 2 / 2
= 1
Using the slope formula, we have:
(y - 1) / (x - 1) = [[(-1 + sqrt(3)) / (8 - 4sqrt(3))] - 1] / ( -2 + sqrt(3) - 1)
(y - 1) / (x - 1) = 1/4, which is the equation of the line which the inflection points at x = 1 and x = -2 + sqrt(3) lies on.
Note that I am skipping the intermediate steps for simplifying here, but the trick is to rationalise the denominator by multiplying a conjugate on both numerator and denominator.
Now, we just need to check that the inflection point at x = -2 - sqrt(3) lies on the same line as well.
L.H.S.
= [[(-1 - sqrt(3)) / (8 + 4sqrt(3))] - 1] / (-2 - sqrt(3) - 1)
= 1/4
= R.H.S.
Once again, I am skipping simplifying steps here.
<span>Anyway, this proves all three points of inflection lies on the same straight line.</span>
The thousand of miles across the United states from the east coast to the west coast.
In order to find the number of miles across the United states from the east coast to the west coast.
Hence, the thousand of miles across the United states from the east coast to the west coast.
Learn more about miles here
brainly.com/question/766716
#SPJ4