4.5 ÷ 3 = 1.5
This means that the ratio has increased by 1.5
Since anything multiplied on one side of a ratio has to be multiplied on the other side too, we multiply 1.5 by 4:
1.5 X 4 = 6
The width would be 6cm
Answer:
The 98% confidence interval estimate of the true average amount of soft drink in each bottle is between 2.97 liters and 3.01 liters.
Step-by-step explanation:
We have the standard deviation for the sample, so we use the t-distribution to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 64 - 1 = 63
98% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 63 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.387
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 2.99 - 0.02 = 2.97 liters
The upper end of the interval is the sample mean added to M. So it is 2.99 + 0.02 = 3.01 liters
The 98% confidence interval estimate of the true average amount of soft drink in each bottle is between 2.97 liters and 3.01 liters.
1. m
2. One set of ordered pairs
3. b
To show why this is, I’m going to explain how to write the equation for a linear function with two random sets of ordered pairs - (1,0) and (5, 8).
First, find the slope. The formula for slope is m = (y2 - y1)/(x2-x1) where m is the slope and (x1, y1) and (x2, y2) are two sets of points.
This is why #1 is m. M is the letter used when finding slope.
To find m, I plug in the two sets of ordered pairs.
m = (8-0)/(5-1)
m = 8/4
m = 2
An equation for a line (linear function) is written in something called slope-intercept form. It looks like y = mx + b. m is the slope and b is the y-intercept (number y equals when x = 0). If m = 3 and b = 1, the equation would be y = 3x + 1.
Here, you have just solved for m and know it equals 2. Plug that value in for m.
y = 2x + b
To solve for b, plug one ordered pair in for x and y. I will use (1,0)
0 = 2(1) + b
0 = 2 + b
-2 = b
Now that you know b = -2, plug that in for b.
y = 2x - 2. Now you have the equation fo the line.
The last two easy transformations involve flipping functions upside down (flipping them around the x-axis), and mirroring them in the y-axis.
The first, flipping upside down, is found by taking the negative of the original function; that is, the rule for this transformation is –f (x).
Answer:
-28
Step-by-step explanation: