Answer:
x = 33.52 amu
Explanation:
It is given that,
Isotope A has a mass of 34 amu and an abundance of 52%, isotope B has a mass of 33 amu and an abundance of 48%.
Let x is the average atomic mass of this element. It can be calculated as follows :

So, the average atomic mass of this element is 33.52 amu.
Answer:
How does the equilibrium change with the removal of hydrogen (H2) gas from this equation? 2H2S ⇌ 2H2(g) + S2(g) A. ... Equilibrium shifts left to produce less reactant.
Explanation:
option A is the correct answer
Equilibrium shifts right to produce more product.
I hope it will help you.
Answer:
5446.8 J
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 50 g
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Specific heat capacity (C) = 0.89 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature. This can be obtained as follow:
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 192.4 – 70
ΔT = 122.4 °C
Finally, we shall determine the heat required to heat up the block of aluminum as follow:
Mass (M) = 50 g
Specific heat capacity (C) = 0.89 J/gºC
Change in temperature (ΔT) = 122.4 °C
Heat (Q) required =?
Q = MCΔT
Q = 50 × 0.89 × 122.4
Q = 5446.8 J
Thus, the heat required to heat up the block of aluminum is 5446.8 J
My educated guess should be the 3rd one
Answer:
See explanation for detailed solution
Explanation:
The balanced reaction equation is Ba(NO3)2 + 2HSO3NH2 → Ba(SO3NH2)2 + 2HNO3
Number of moles of Ba(NO3)2 = 1.4 g/ 261.337 g/mol = 5.36 × 10^-3 moles
From the reaction equation;
1 mole of Ba(NO3)2 yields 1 mole of Ba(SO3NH2)2
5.36 × 10^-3 moles of Ba(NO3)2 yields 5.36 × 10^-3 moles of Ba(SO3NH2)2
For HSO3NH2
Number of moles = 2.4g/97.10 g/mol =0.0247 moles
2 moles of HSO3NH2 yields 1 mole of Ba(SO3NH2)2
0.0247 moles of HSO3NH2 yields 0.0247 ×1/2 = 0.0137 moles
Hence, Ba(NO3)2 is the limiting reactant
The theoretical yield of Ba(SO3NH2)2 is 5.36 × 10^-3 moles × 329.4986 g/mol = 1.766 g
b)
Number of moles = mass/ molar mass
Molar mass = mass/ number of moles
Molar mass = 1.6925 g/5.36 × 10^-3 moles = 315.76 g