Answer:
The molar mass of copper (II) nitrate is 187.5 g/mol.
Explanation:
The molar mass is the mass of all the atoms in a molecule in grams per mole. To calculate the molar mass of a molecule, we first obtain the atomic weights from the individual elements in a periodic table. We then count the number of atoms and multiply it by the individual atomic masses.
Answer:
See explaination
Explanation:
1)
we know that
half cell with higher reduction potential is cathode
so
cathode :
N20 + 2H+ + 2e- ---> N2 + H20
anode :
Cr(s) ---> Cr+3 + 3e-
so
overall reaction is
3 N20 + 6H+ + 2 Cr ---> 3N2 + 3H20 + 2Cr+3
now
Eo cell = Eo cathode - Eo anode
so
EO cell = 1.77 + 0.74
Eo cell = 2.51 V
now
in this case
oxidizing agents are N20 and Cr+3
reducing agents are Cr and N2
higher the reduction potential , stronger the oxidizing agent
lower the reduction potential , stronger the reducing agent
so
oxidzing agents
N20 > Cr+3
reducing agents
Cr > N2
2)
cathode :
Au+ + e- --> Au
anode :
Cr ---> Cr+3 + 3e-
overall reaction
3Au+ + Cr ---> 3Au + Cr+3
Eo cell = 1.69 + 0.74
Eo cell = 2.43
now
oxidizing agents :
Au+ > Cr+3
reducing agents :
Cr > Au
3)
cathode :
N20 + 2H+ + 2e- ---> N2 + H20
andoe :
Au ---> Au+ + e-
overall
2 Au + N20 + 2H+ --> 2 Au+ + N2 + H20
Eo cell = 1.77 - 1.69
Eo cell = 0.08
oxidizing agents
N20 > Au+
reducing agents
Au > N2
Water is <u>not wet</u> because the word wet is a form of liquid/water saturated/soaking the object.
Chemical equilibrium is reach when the concentrations of the product and reactants will no longer change with time. this does not mean that there is no change in concentration, only the net change is zero. the forward rate of reaction is now equal to backward rate of reaction.
Answer:
It's determined by the ability of one mineral to scratch another mineral.