Answer:
mas of water displaced = 41.4 g
Explanation:
Weight in air = True weight = 45 g
Apparent weight = 3.6 g
Apparent weight = True weight - Buoyant force
Buoyant force = 45 g - 3.6 g = 41.4 g
Weight of water displaced = Buoyant force
Weight of water displaced = 41.4 g dyne
mas of water displaced = 41.4 g
Answer: A medium is any substance or region through which a wave is transmitted. The speed of a wave is dependant on four factors: wavelength, frequency, medium, and temperature. Wave speed is calculated by multiplying the wavelength times the frequency (speed = l * f).
That's 10 thanks for my points back and answers B
Answer:
117.72 N
Explanation:
The given parameters are;
The mass m₁ = 2.0 × 10³ kg
The mass m₂ = 4.4 × 10² kg
The mass of the man, m₃ = 6.0 × 10 kg
The condition of the interaction of the surfaces = Frictionless surfaces
The
The tension in the string = The downward force = The weight of (m₂ + m₃) = (m₂ + m₃) × g
Let <em>a</em> represent the acceleration of the connected masses due to the weight of m₂, and m₃, we have;
(m₁ + m₂ + m₃) × a = (m₂ + m₃) × g
∴ a = (m₂ + m₃) × g/(m₁ + m₂ + m₃)
Which gives;
a = (4.4 × 10²+ 6.0 × 10) × 9.81/(2.0 × 10³+ 4.4 × 10²+ 6.0 × 10) = 1.962
The downward acceleration, a = 1.962 m/s²
The apparent weight of the man = The mass of the man, m₃ × The acceleration, <em>a</em>
∴ The apparent weight of the man = 6.0×10 kg ×1.962 m/s² = 117.72 N
A. The potential energy is always the highest at the top and the kinetic energy is always the lowest at the top.