The main factor that determines the stages a star will follow after the main sequence is the star's mass or size.
<h3>What is main sequence?</h3>
The main sequence of a star is a stage in the life cycle of that star. During the main sequence ( also called the zero age ), the star generates energy by nuclear fusion of Hydrogen atoms at the core of the star into Helium atoms. Eventually, the star runs out of hydrogen atoms, which concludes the main sequence. What happens afterward depends on the size of the star.
<h3>Low mass stars </h3>
For low-mass stars ( stars that are less than 0.1 times the mass of the sun), they slowly collapse into white dwarfs. These stars do not get hot enough to fuse helium atoms, instead hydrogen fusion continues until the whole star is filled with helium and slowly collapses into a white dwarf while it grows dimmer and colder.
<h3>Medium-sized stars</h3>
Medium-sized stars ( stars about 0.6 - 10 times the mass of our sun) become red giants. Stars similar in size to our sun are hot enough to fuse helium atoms, so towards the end of the main sequence it starts to fuse helium atoms, forming heavier elements like carbon and oxygen. The heavier elements move to the star's core due to gravity, while lighter elements like hydrogen form a shell around the core. This causes the sun to then grow in size, forming a red giant.
<h3>Large stars</h3>
Massive stars ( greater than 10 times the mass of the sun) and super-massive stars ( more than 40 times the mass of the sun ) end up exploding into a supernova , while the dense core collapses into a neutron star or a black hole.
To know more about main sequence, check out;
brainly.com/question/18141359
#SPJ4
Answer:
The answer to your question is Decrease
Alot as far as i know unless you need it in formal terms.
Answer:
The pressure of the air in the tyre is 20 kPa
Explanation:
The parameters for the bicycle pump and tyre are;
The volume of air contained in the bicycle pump, V₁ = 20 cm³
The pressure of the air contained in the bicycle pump, P₁ = 100 kPa
The volume (available) of the tyre, where the air is pumped, V₂ = 100 cm³
Let P₂ represent the pressure in the tyre after the air is pumped
By Boyle's law, we have that at constant temperature, the volume of a given mass of gas is inversely proportional to its pressure;
Mathematically, Boyle's law gives the following equation;
P₁ × V₁ = P₂ × V₂
∴ P₂ = (P₁ × V₁)/V₂
Substituting the known values gives;
P₂ = (100 kPa × 20 cm³)/(100 cm³)
∴ P₂ = 100 kPa × 1/5 = 20 kPa
P₂ = 20 kPa
The pressure of the air in the tyre = P₂ = 20 kPa.