Answer:
D) None of the above
Step-by-step explanation:
These are no supplementary or complimentary because they do not add up to 180 and to be vertical they would have to be across from each other
Answer:
y = 50 + 35x we dont know how many hours they worked
Step-by-step explanation:
Answer:
first figure out what v is then add it with 2 then compare
Step-by-step explanation:
Step-by-step explanation:
<em>Given</em>
<em>We </em><em>know </em><em>that </em><em>in </em><em>a </em><em>parallelogram </em><em>opposite </em><em>angles </em><em>are </em><em>equal</em><em>. </em><em>So </em>
<em>1st </em><em>and </em><em>3rd </em><em>angles </em><em>=</em><em> </em><em>1</em><em>1</em><em>8</em><em>°</em>
<em>Let </em><em>2nd </em><em>and </em><em>4th </em><em>angles </em><em>=</em><em> </em><em>x</em>
<em>Now</em>
<em>1</em><em>1</em><em>8</em><em>°</em><em> </em><em>+</em><em> </em><em>1</em><em>1</em><em>8</em><em>°</em><em> </em><em>+</em><em> </em><em>x </em><em>+</em><em> </em><em>x </em><em>=</em><em> </em><em>3</em><em>6</em><em>0</em><em>°</em><em> </em><em>(</em><em> </em><em>Being </em><em>sum </em><em>of </em><em>angles </em><em>of </em><em>parallelogram</em><em>) </em>
<em>2</em><em>3</em><em>6</em><em>°</em><em> </em><em>+</em><em> </em><em>2x </em><em>=</em><em> </em><em>3</em><em>6</em><em>0</em><em>°</em>
<em>2x </em><em>=</em><em> </em><em>3</em><em>6</em><em>0</em><em>°</em><em> </em><em>-</em><em> </em><em>2</em><em>3</em><em>6</em><em>°</em>
<em>2x </em><em>=</em><em> </em><em>1</em><em>2</em><em>4</em><em>°</em>
<em>Therefore </em><em>x </em><em>=</em><em> </em><em>6</em><em>2</em><em>°</em>
<em>Now </em><em>the </em><em>measure </em><em>of </em><em>other </em><em>all </em><em>angles </em>
<em>118</em><em>°</em><em> </em><em>,</em><em> </em><em>6</em><em>2</em><em>°</em><em> </em><em>,</em><em> </em><em>1</em><em>1</em><em>8</em><em>°</em><em>,</em><em> </em><em>6</em><em>2</em><em>°</em>
Answer:
y = -18
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define systems</u>
y = 5x - 3
3x - 2y = 27
<u>Step 2: Rewrite systems</u>
- Define: 3x - 2y = 27
- Add 2y on both sides: 3x = 2y + 27
- Divide 3 on both sides: x = 2/3y + 9
<u>Step 3: Redefine</u>
y = 5x - 3
x = 2/3y + 9
<u>Step 4: Solve for </u><em><u>y</u></em>
- Substitute in <em>x</em>: y = 5(2/3y + 9) - 3
- Distribute 5: y = 10/3y + 45 - 3
- Combine like terms: y = 10/3y + 42
- Subtract 10/3y on both sides: -7/3y = 42
- Divide -7/3 on both sides: y = -18