1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
3 years ago
8

The slope of the line that passes through the points (3,14) and (7,9) is

Mathematics
1 answer:
Akimi4 [234]3 years ago
6 0

Answer:

m = -1.25

Step-by-step explanation:

Slope =  (Y2-Y1)  =  (9-14)  =  (-5)  = -1.25

              (X2-X1)      (7-3)       (4)

<em>BRAINLIEST PLS!!!</em>

You might be interested in
Assume that f is a one-to-one function.
Pavlova-9 [17]

It is given in the question that f is a one-to-one function.

And for a one-to - one function,

If

f(a)=b, \ then \ f^{-1} (b) =a

So we will get

a. If \ f(3)=15, \ then \ f^{-1} (15) =3&#10;\\&#10;b. If \  f^{-1}(6)=4, \ then \ f(4)=6

3 0
3 years ago
Please help with explanation and show work :)
ANEK [815]
3. A=bh/2
2A=bh
h=2A/b.

8. Dy-Cx=E
Dy=E+Cx
y=(E+Cx)/D
3 0
3 years ago
Malik buys and sells car parts. He bought two tires for $45.00 each and later sold them for $65.00 each. He bought three rims fo
saw5 [17]
The answer is 213 dollars
4 0
4 years ago
Use the given information to write the equation of the parabola.
m_a_m_a [10]

Answer:

x² = -2y

Step-by-step explanation:

The focus is p away from the vertex, and so is the directrix.

To find the equation of the parabola, we must first determine if the parabola is horizontal or vertical.

  • Horizontal parabola [Standard form]: (y – k)² = 4p(x – h)
  • Vertical parabola [Standard form]: (x – h)² = 4p(y – k)

If the parabola is vertical, the directrix, and focus will have the same x value but different y value compared to the vertex (h, k). You can also tell if the directrix in in the form y = k – p, and if the focus is in the form (h, k + p).

Likewise, if the parabola is horizontal, the directrix, and focus will have the same y value but different x value compared to the vertex (h,k) . You can also tell if the directrix is in the form x = h – p, and if the focus is in the form (h + p, k).

For this problem, given that the vertex is at the origin (0,0), and that the focus is at the point (0, -½).

You can tell that the x value is the same for the vertex, and focus so this must be a vertical parabola. Because this is a vertical parabola, we can use the form mentioned as earlier (x – h)² = 4p(y – k).

If h = 0, and k = 0, the p value must be the difference between the k of the vertex, and the k of the focus: -½ - 0 → -½.

Now we can just plug in our known information to derive the equation!

h = 0, k = 0, p = -½ → (x - h)² = 4p(y - k) →

(x - 0)² = 4(-½)(y - 0) → x² = -2(y - 0) →

x² = -2y.

Also p = 1/4a, if you are wondering.

So because this is a vertical parabola, x² = -2y is generally the same as y = -1/2x² in standard quadratic form. I just like to think of the horizontal parabola as an inverse quadratic because it is like reflecting over the line y = x.

8 0
3 years ago
Read 2 more answers
-x + 2y = 3<br> 2x – 3y = -6
s2008m [1.1K]

Answer:

x = -3

y = 0

Step-by-step explanation:

<u>Given</u><u> </u><u>equations</u><u> </u><u>:</u><u>-</u><u> </u>

<u>-x</u><u> </u><u>+</u><u> </u><u>2</u><u>y</u><u> </u><u>=</u><u> </u><u>3</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>i</u><u> </u><u>)</u>

<u>2</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>y</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>ii</u><u> </u><u>)</u>

<u>From</u><u> </u><u>(</u><u> </u><u>i</u><u> </u><u>)</u><u> </u><u> </u>

<u>-x</u><u> </u><u>+</u><u> </u><u>2</u><u>y</u><u> </u><u>=</u><u> </u><u>3</u><u> </u>

<u>-x</u><u> </u><u>=</u><u> </u><u>3</u><u> </u><u>-</u><u> </u><u>2</u><u>y</u><u> </u>

<u>x</u><u> </u><u>=</u><u> </u><u>2</u><u>y</u><u> </u><u>-</u><u> </u><u>3</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>iii</u><u> </u><u>)</u>

<u>From</u><u> </u><u>(</u><u> </u><u>ii</u><u> </u><u>)</u><u> </u>

<u>2</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>y</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u>

<u>2</u><u>x</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>+</u><u> </u><u>3</u><u>y</u><u> </u>

<u>x =  \frac{ - 6 + 3y}{2}</u>

<u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>iv</u><u> </u><u>)</u>

<u>Equating</u><u> </u><u>(</u><u> </u><u>iii</u><u> </u><u>)</u><u> </u><u>and</u><u> </u><u>(</u><u> </u><u>iv</u><u> </u><u>)</u>

<u>x</u><u> </u><u>=</u><u> </u><u>x</u><u> </u>

<u>2y - 3 =  \frac{ - 6 + 3y}{2}</u>

4y - 6 = -6 + 3y

4y - 3y = -6 + 6

y = 0

Putting value of y in ( iii )

x = 2y - 3

x = 2 ( 0 ) - 3

x = -3

4 0
3 years ago
Other questions:
  • Solve the equation below<br><br> 3h - 2( 4h - 5 ) = 10 - 5h
    14·2 answers
  • Given the system of equations: 2x – y = –2 x = 14 + 2y What is the value of the system determinant? What is the value of the y−d
    15·2 answers
  • (90x)^6 can this be simplified further?
    12·2 answers
  • Please help! i’m struggling in math so much!
    10·1 answer
  • Sam and Annika ride their bikes to school. Sam rides his bike (K )kilometers. Annika rides her bike two less than four times as
    14·1 answer
  • What is the answer to 36/4+-10x2?
    7·1 answer
  • 20 Points
    8·2 answers
  • Find the sum is of the geometric series 12+6+3+...
    14·1 answer
  • Which facts are true for the graph of the function below? Check all that apply.
    13·1 answer
  • Find the odds for and the odds against the event rolling a fair die and getting a 2 or a 3​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!